Suppr超能文献

基于 $\ell_{p}$ 正则化稀疏回归的非光滑罚分聚类。

Nonsmooth Penalized Clustering via $\ell _{p}$ Regularized Sparse Regression.

出版信息

IEEE Trans Cybern. 2017 Jun;47(6):1423-1433. doi: 10.1109/TCYB.2016.2546965. Epub 2016 Apr 27.

Abstract

Clustering has been widely used in data analysis. A majority of existing clustering approaches assume that the number of clusters is given in advance. Recently, a novel clustering framework is proposed which can automatically learn the number of clusters from training data. Based on these works, we propose a nonsmooth penalized clustering model via l ( ) regularized sparse regression. In particular, this model is formulated as a nonsmooth nonconvex optimization, which is based on over-parameterization and utilizes an l -norm-based regularization to control the tradeoff between the model fit and the number of clusters. We theoretically prove that the new model can guarantee the sparseness of cluster centers. To increase its practicality for practical use, we adhere to an easy-to-compute criterion and follow a strategy to narrow down the search interval of cross validation. To address the nonsmoothness and nonconvexness of the cost function, we propose a simple smoothing trust region algorithm and present its convergent and computational complexity analysis. Numerical studies on both simulated and practical data sets provide support to our theoretical results and demonstrate the advantages of our new method.

摘要

聚类已被广泛应用于数据分析。大多数现有的聚类方法都假设聚类的数量是预先给定的。最近,提出了一种新的聚类框架,可以从训练数据中自动学习聚类的数量。基于这些工作,我们通过 l ( ) 正则化稀疏回归提出了一个非光滑惩罚聚类模型。具体来说,该模型被表述为一个非光滑非凸优化问题,基于过度参数化并利用 l -范数正则化来控制模型拟合和聚类数量之间的权衡。我们从理论上证明了新模型可以保证聚类中心的稀疏性。为了提高其在实际应用中的实用性,我们坚持易于计算的准则,并采用一种策略来缩小交叉验证的搜索区间。为了解决代价函数的非光滑性和非凸性,我们提出了一种简单的平滑信赖域算法,并给出了其收敛性和计算复杂度分析。对模拟数据集和实际数据集的数值研究为我们的理论结果提供了支持,并展示了我们新方法的优势。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验