NPO Mori wa Umi no Koibito, Moune Institute for Forest-Sato-Sea Studies, 212 Higashi-Moune, Karakuwa-cho, Kesennuma, Miyagi 988-0582, Japan.
Tokyo Metropolitan University, Graduate School of Urban Environmental Sciences, 1-1 Minami-Osawa, Hachioji, Tokyo 192-0397, Japan.
Harmful Algae. 2017 Feb;62:52-59. doi: 10.1016/j.hal.2016.11.018. Epub 2017 Jan 3.
While cyst germination may be an important factor for the initiation of harmful/toxic blooms, assessments of the fluctuation in phytoplankton cyst germination, from bottom sediments to water columns, are rare in situ due to lack of technology that can detect germinated cells in natural bottom sediments. This study introduces a simple mesocosm method, modeled after previous in situ methods, to measure the germination of plankton resting stage cells. Using this method, seasonal changes in germination fluxes of toxic dinoflagellates resting cysts, specifically Alexandrium fundyense (A. tamarense species complex Group I) and A. pacificum (A. tamarense species complex Group IV), were investigated at a fixed station in Kesennuma Bay, northeast Japan, from April 2014 to April 2015. This investigation was conducted in addition to the typical samplings of seawater and bottom sediments to detect the dinoflagellates vegetative cells and resting cysts. Bloom occurrences of A. fundyense were observed June 2014 and February 2015 with maximum cell densities reaching 3.6×10 cells m and 1.4×10 cells m, respectively. The maximum germination fluxes of A. fundyense cysts occurred in April 2014 and December 2014 and were 9.3×10 cells mday and 1.4×10 cells mday, respectively. For A. pacificum, the highest cell density was 7.3×10 cells m during the month of August, and the maximum germination fluxes occurred in July and August, reaching 5.8×10 cells mday. Thus, this study revealed the seasonal dynamics of A. fundyense and A. pacificum cyst germination and their bloom occurrences in the water column. Blooms occurred one to two months after peak germination, which strongly suggests that both the formation of the initial population by cyst germination and its continuous growth in the water column most likely contributed to toxic bloom occurrences of A. fundyense and A. pacificum in the bay.
虽然胞囊萌发可能是有害/有毒藻华起始的一个重要因素,但由于缺乏能够检测天然底泥中萌发细胞的技术,因此从底泥到水柱的浮游植物胞囊萌发波动评估在现场很少进行。本研究介绍了一种简单的中尺度方法,该方法是在以前的原位方法基础上建模的,用于测量浮游生物休眠阶段细胞的萌发。使用该方法,于 2014 年 4 月至 2015 年 4 月,在日本东北地区釜石湾的一个固定站位,调查了有毒甲藻休眠胞囊(即亚历山大藻 fundyense(亚历山大藻种复合群 I)和亚历山大藻 pacificum(亚历山大藻种复合群 IV))的萌发通量的季节性变化。除了典型的海水和底泥采样以检测甲藻营养细胞和休眠胞囊外,还进行了此项调查。亚历山大藻 fundyense 的藻华发生在 2014 年 6 月和 2015 年 2 月,最大细胞密度分别达到 3.6×10 cells m 和 1.4×10 cells m。亚历山大藻 fundyense 胞囊的最大萌发通量分别发生在 2014 年 4 月和 2014 年 12 月,达到 9.3×10 cells mday 和 1.4×10 cells mday。对于亚历山大藻 pacificum,最高的细胞密度是 8 月的 7.3×10 cells m,最大的萌发通量发生在 7 月和 8 月,达到 5.8×10 cells mday。因此,本研究揭示了该海湾中亚历山大藻 fundyense 和亚历山大藻 pacificum 胞囊萌发及其水华发生的季节性动态。藻华发生在峰值萌发后一到两个月,这强烈表明,胞囊萌发形成初始种群及其在水柱中的持续生长很可能促成了亚历山大藻 fundyense 和亚历山大藻 pacificum 在该湾的有毒藻华发生。