Suppr超能文献

用于治疗乳腺癌的成纤维细胞生长因子受体(FGFR)靶向疗法。

FGFR-targeted therapeutics for the treatment of breast cancer.

作者信息

De Luca Antonella, Frezzetti Daniela, Gallo Marianna, Normanno Nicola

机构信息

a Cell Biology and Biotherapy Unit , Istituto Nazionale Tumori 'Fondazione G. Pascale'-IRCCS , Naples , Italy.

出版信息

Expert Opin Investig Drugs. 2017 Mar;26(3):303-311. doi: 10.1080/13543784.2017.1287173. Epub 2017 Feb 6.

Abstract

Breast cancer is a complex disease and several molecular drivers regulate its progression. Fibroblast growth factor receptor (FGFR) signaling is frequently deregulated in many cancers, including breast cancer. Due the involvement of the FGFR/FGF axis in the pathogenesis and progression of tumors, FGFR-targeted agents might represent a potential therapeutic option for breast cancer patients. Areas covered: This review offers an overview of targeted agents against FGFRs and their clinical development in breast cancer. The most relevant literature and the latest studies in the Clinicaltrial.com database have been discussed. Expert opinion: FGFR inhibition has been recently considered as a promising therapeutic option for different tumor types. However, preliminary results of clinical trials of FGFR inhibitors in breast cancer have been quite disappointing. In order to increase the clinical benefit of FGFR therapies in breast cancer, future studies should focus on: understanding the role of the various FGFR aberrations in cancer progression; identifying potential biomarkers to select patients that could benefit of FGFR inhibitors and developing therapeutic strategies that improve the efficacy of these agents and minimize toxicities.

摘要

乳腺癌是一种复杂的疾病,有几种分子驱动因素调控其进展。成纤维细胞生长因子受体(FGFR)信号传导在包括乳腺癌在内的许多癌症中经常失调。由于FGFR/FGF轴参与肿瘤的发病机制和进展,FGFR靶向药物可能是乳腺癌患者的一种潜在治疗选择。涵盖领域:本综述概述了针对FGFR的靶向药物及其在乳腺癌中的临床开发情况。讨论了Clinicaltrial.com数据库中最相关的文献和最新研究。专家意见:FGFR抑制最近被认为是针对不同肿瘤类型的一种有前景的治疗选择。然而,FGFR抑制剂在乳腺癌临床试验中的初步结果相当令人失望。为了提高FGFR疗法在乳腺癌中的临床获益,未来的研究应集中于:了解各种FGFR异常在癌症进展中的作用;识别潜在的生物标志物以选择可能从FGFR抑制剂中获益的患者;以及制定提高这些药物疗效并将毒性降至最低的治疗策略。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验