Suppr超能文献

大自然的技术陶瓷:鸟类蛋壳。

Nature's technical ceramic: the avian eggshell.

作者信息

Hahn Eric N, Sherman Vincent R, Pissarenko Andrei, Rohrbach Samuel D, Fernandes Daniel J, Meyers Marc A

机构信息

Materials Science and Engineering Program, University of California, San Diego, CA, USA.

Mechanical and Aerospace Engineering Department, University of California, San Diego, CA, USA.

出版信息

J R Soc Interface. 2017 Jan;14(126). doi: 10.1098/rsif.2016.0804.

Abstract

Avian eggshells may break easily when impacted at a localized point; however, they exhibit impressive resistance when subjected to a well-distributed compressive load. For example, a common demonstration of material strength is firmly squeezing a chicken egg along its major axis between one's hands without breaking it. This research provides insight into the underlying mechanics by evaluating both macroscopic and microstructural features. Eggs of different size, varying from quail (30 mm) to ostrich (150 mm), are investigated. Compression experiments were conducted along the major axis of the egg using force-distributing rubber cushions between steel plates and the egg. The force at failure increases with egg size, reaching loads upwards of 5000 N for ostrich eggs. The corresponding strength, however, decreases with increasing shell thickness (intimately related to egg size); this is rationalized by a micro-defects model. Failure occurs by axial splitting parallel to the loading direction-the result of hoop tensile stresses due to the applied compressive load. Finite-element analysis is successfully employed to correlate the applied compressive force to tensile breaking strength for the eggs, and the influence of geometric ratio and microstructural heterogeneities on the shell's strength and fracture toughness is established.

摘要

禽蛋壳在局部点受到撞击时可能很容易破碎;然而,当受到均匀分布的压缩载荷时,它们表现出令人印象深刻的抵抗力。例如,一个常见的材料强度演示是将鸡蛋沿其长轴紧紧地握在手中而不使其破碎。这项研究通过评估宏观和微观结构特征,深入了解了其潜在的力学原理。研究了从鹌鹑蛋(30毫米)到鸵鸟蛋(150毫米)不同大小的蛋。使用钢板和蛋之间的力分布橡胶垫沿蛋的长轴进行压缩实验。破坏时的力随着蛋的大小增加而增加,鸵鸟蛋达到5000牛以上的载荷。然而,相应的强度随着蛋壳厚度的增加(与蛋的大小密切相关)而降低;这通过微缺陷模型得到了合理的解释。破坏是通过平行于加载方向的轴向分裂发生的——这是由于施加的压缩载荷产生的环向拉应力的结果。成功地采用有限元分析将施加的压缩力与蛋的拉伸断裂强度相关联,并确定了几何比例和微观结构不均匀性对蛋壳强度和断裂韧性的影响。

相似文献

1
Nature's technical ceramic: the avian eggshell.大自然的技术陶瓷:鸟类蛋壳。
J R Soc Interface. 2017 Jan;14(126). doi: 10.1098/rsif.2016.0804.
2
Mechanical design principles of avian eggshells for survivability.鸟类蛋壳的生存力学设计原理。
Acta Biomater. 2024 Apr 1;178:233-243. doi: 10.1016/j.actbio.2024.02.036. Epub 2024 Feb 27.
3
The fracture toughness of eggshell.蛋壳的断裂韧性。
Acta Biomater. 2016 Jun;37:21-7. doi: 10.1016/j.actbio.2016.04.028. Epub 2016 Apr 19.
6
Determinants of eggshell strength in endangered raptors.濒危猛禽蛋壳强度的决定因素。
J Exp Zool A Ecol Genet Physiol. 2009 Apr 1;311(4):303-11. doi: 10.1002/jez.532.
9
Anisotropic fracture resistance of avian eggshell.禽蛋壳的各向异性抗断裂性。
J Mech Behav Biomed Mater. 2020 Oct;110:103888. doi: 10.1016/j.jmbbm.2020.103888. Epub 2020 Jun 3.

引用本文的文献

本文引用的文献

1
A new approach to analyze the dynamic strength of eggs.一种分析鸡蛋动态强度的新方法。
J Biol Phys. 2016 Oct;42(4):525-537. doi: 10.1007/s10867-016-9420-9. Epub 2016 Jun 8.
2
The fracture toughness of eggshell.蛋壳的断裂韧性。
Acta Biomater. 2016 Jun;37:21-7. doi: 10.1016/j.actbio.2016.04.028. Epub 2016 Apr 19.
3
Effect of the loading rate on compressive properties of goose eggs.加载速率对鹅蛋抗压性能的影响。
J Biol Phys. 2016 Mar;42(2):223-33. doi: 10.1007/s10867-015-9403-2. Epub 2015 Oct 27.
5
The eggshell: structure, composition and mineralization.蛋壳:结构、组成和矿化。
Front Biosci (Landmark Ed). 2012 Jan 1;17(4):1266-80. doi: 10.2741/3985.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验