Suppr超能文献

生化与细胞分析揭示了Cripto-1和Cryptic的配体结合特异性、配体识别的分子基础以及膜结合依赖性活性。

Biochemical and Cellular Analysis Reveals Ligand Binding Specificities, a Molecular Basis for Ligand Recognition, and Membrane Association-dependent Activities of Cripto-1 and Cryptic.

作者信息

Aykul Senem, Parenti Anthony, Chu Kit Yee, Reske Jake, Floer Monique, Ralston Amy, Martinez-Hackert Erik

机构信息

From the Department of Biochemistry and Molecular Biology, Michigan State University, East Lansing, Michigan 48824-1319.

From the Department of Biochemistry and Molecular Biology, Michigan State University, East Lansing, Michigan 48824-1319

出版信息

J Biol Chem. 2017 Mar 10;292(10):4138-4151. doi: 10.1074/jbc.M116.747501. Epub 2017 Jan 26.

Abstract

Transforming growth factor β (TGF-β) pathways are key determinants of cell fate in animals. Their basic mechanism of action is simple. However, to produce cell-specific responses, TGF-β pathways are heavily regulated by secondary factors, such as membrane-associated EGF-CFC family proteins. Cellular activities of EGF-CFC proteins have been described, but their molecular functions, including how the mammalian homologs Cripto-1 and Cryptic recognize and regulate TGF-β family ligands, are less clear. Here we use purified human Cripto-1 and mouse Cryptic produced in mammalian cells to show that these two EGF-CFC homologs have distinct, highly specific ligand binding activities. Cripto-1 interacts with BMP-4 in addition to its known partner Nodal, whereas Cryptic interacts only with Activin B. These interactions depend on the integrity of the protein, as truncated or deglycosylated Cripto-1 lacked BMP-4 binding activity. Significantly, Cripto-1 and Cryptic blocked binding of their cognate ligands to type I and type II TGF-β receptors, indicating that Cripto-1 and Cryptic contact ligands at their receptor interaction surfaces and, thus, that they could inhibit their ligands. Indeed, soluble Cripto-1 and Cryptic inhibited ligand signaling in various cell-based assays, including SMAD-mediated luciferase reporter gene expression, and differentiation of a multipotent stem cell line. But in agreement with previous work, the membrane bound form of Cripto-1 potentiated signaling, revealing a critical role of membrane association for its established cellular activity. Thus, our studies provide new insights into the mechanism of ligand recognition by this enigmatic family of membrane-anchored TGF-β family signaling regulators and link membrane association with their signal potentiating activities.

摘要

转化生长因子β(TGF-β)信号通路是动物细胞命运的关键决定因素。其基本作用机制很简单。然而,为了产生细胞特异性反应,TGF-β信号通路受到诸如膜相关EGF-CFC家族蛋白等二级因子的严格调控。EGF-CFC蛋白的细胞活性已有描述,但其分子功能,包括哺乳动物同源物Cripto-1和Cryptic如何识别和调节TGF-β家族配体,尚不清楚。在这里,我们使用在哺乳动物细胞中产生的纯化的人Cripto-1和小鼠Cryptic,表明这两种EGF-CFC同源物具有独特的、高度特异性的配体结合活性。Cripto-1除了与已知的伙伴Nodal相互作用外,还与BMP-4相互作用,而Cryptic仅与激活素B相互作用。这些相互作用取决于蛋白质的完整性,因为截短的或去糖基化的Cripto-1缺乏BMP-4结合活性。重要的是,Cripto-1和Cryptic阻断了其同源配体与I型和II型TGF-β受体的结合,表明Cripto-1和Cryptic在其受体相互作用表面接触配体,因此它们可以抑制其配体。事实上,可溶性Cripto-1和Cryptic在各种基于细胞的试验中抑制配体信号传导,包括SMAD介导的荧光素酶报告基因表达,以及多能干细胞系的分化。但与先前的工作一致,Cripto-1的膜结合形式增强了信号传导,揭示了膜结合对其既定细胞活性的关键作用。因此,我们的研究为这个神秘的膜锚定TGF-β家族信号调节剂家族的配体识别机制提供了新的见解,并将膜结合与其信号增强活性联系起来。

相似文献

2
Cripto binds transforming growth factor beta (TGF-beta) and inhibits TGF-beta signaling.
Mol Cell Biol. 2006 Dec;26(24):9268-78. doi: 10.1128/MCB.01168-06. Epub 2006 Oct 9.
3
Cell-type specific regulation of myostatin signaling.
FASEB J. 2012 Apr;26(4):1462-72. doi: 10.1096/fj.11-191189. Epub 2011 Dec 27.
4
Dual roles of Cripto as a ligand and coreceptor in the nodal signaling pathway.
Mol Cell Biol. 2002 Jul;22(13):4439-49. doi: 10.1128/MCB.22.13.4439-4449.2002.
5
Antibody blockade of the Cripto CFC domain suppresses tumor cell growth in vivo.
J Clin Invest. 2003 Aug;112(4):575-87. doi: 10.1172/JCI17788.
6
Nodal signals to Smads through Cripto-dependent and Cripto-independent mechanisms.
Mol Cell. 2001 May;7(5):949-57. doi: 10.1016/s1097-2765(01)00249-0.
7
Cripto/GRP78 modulation of the TGF-β pathway in development and oncogenesis.
FEBS Lett. 2012 Jul 4;586(14):1836-45. doi: 10.1016/j.febslet.2012.01.051. Epub 2012 Feb 1.
8
Cripto forms a complex with activin and type II activin receptors and can block activin signaling.
Proc Natl Acad Sci U S A. 2003 Apr 29;100(9):5193-8. doi: 10.1073/pnas.0531290100. Epub 2003 Apr 7.
10
The multifaceted role of the embryonic gene Cripto-1 in cancer, stem cells and epithelial-mesenchymal transition.
Semin Cancer Biol. 2014 Dec;29:51-8. doi: 10.1016/j.semcancer.2014.08.003. Epub 2014 Aug 19.

引用本文的文献

1
2
Cell type-specific transforming growth factor-β (TGF-β) signaling in the regulation of salivary gland fibrosis and regeneration.
J Oral Biol Craniofac Res. 2024 May-Jun;14(3):257-272. doi: 10.1016/j.jobcr.2024.03.005. Epub 2024 Mar 21.
3
Production in Bacteria and Characterization of Engineered Humanized Fab Fragment against the Nodal Protein.
Pharmaceuticals (Basel). 2023 Aug 10;16(8):1130. doi: 10.3390/ph16081130.
5
New Insights into Cancer Targeted Therapy: Nodal and Cripto-1 as Attractive Candidates.
Int J Mol Sci. 2021 Jul 22;22(15):7838. doi: 10.3390/ijms22157838.
6
Cripto favors chondrocyte hypertrophy via TGF-β SMAD1/5 signaling during development of osteoarthritis.
J Pathol. 2021 Nov;255(3):330-342. doi: 10.1002/path.5774. Epub 2021 Sep 6.

本文引用的文献

1
Determination of half-maximal inhibitory concentration using biosensor-based protein interaction analysis.
Anal Biochem. 2016 Sep 1;508:97-103. doi: 10.1016/j.ab.2016.06.025. Epub 2016 Jun 27.
2
Transforming Growth Factor-β Family Ligands Can Function as Antagonists by Competing for Type II Receptor Binding.
J Biol Chem. 2016 May 13;291(20):10792-804. doi: 10.1074/jbc.M115.713487. Epub 2016 Mar 9.
3
OSKM Induce Extraembryonic Endoderm Stem Cells in Parallel to Induced Pluripotent Stem Cells.
Stem Cell Reports. 2016 Apr 12;6(4):447-455. doi: 10.1016/j.stemcr.2016.02.003. Epub 2016 Mar 3.
4
Dynamic regulation of the cancer stem cell compartment by Cripto-1 in colorectal cancer.
Cell Death Differ. 2015 Oct;22(10):1700-13. doi: 10.1038/cdd.2015.19. Epub 2015 Mar 20.
5
Repulsive guidance molecule is a structural bridge between neogenin and bone morphogenetic protein.
Nat Struct Mol Biol. 2015 Jun;22(6):458-65. doi: 10.1038/nsmb.3016. Epub 2015 May 4.
6
Human Cerberus prevents nodal-receptor binding, inhibits nodal signaling, and suppresses nodal-mediated phenotypes.
PLoS One. 2015 Jan 20;10(1):e0114954. doi: 10.1371/journal.pone.0114954. eCollection 2015.
7
Elevated expression of Cripto-1 correlates with poor prognosis in non-small cell lung cancer.
Tumour Biol. 2014 Sep;35(9):8673-8. doi: 10.1007/s13277-014-2039-1. Epub 2014 May 29.
8
Nodal·Gdf1 heterodimers with bound prodomains enable serum-independent nodal signaling and endoderm differentiation.
J Biol Chem. 2014 Jun 20;289(25):17854-71. doi: 10.1074/jbc.M114.550301. Epub 2014 May 5.
10
Cripto-1 enhances the canonical Wnt/β-catenin signaling pathway by binding to LRP5 and LRP6 co-receptors.
Cell Signal. 2013 Jan;25(1):178-89. doi: 10.1016/j.cellsig.2012.09.024. Epub 2012 Sep 27.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验