Napoli Joseph L
Department of Nutritional Sciences and Toxicology, University of California, Berkeley, CA 94720, United States.
Pharmacol Ther. 2017 May;173:19-33. doi: 10.1016/j.pharmthera.2017.01.004. Epub 2017 Jan 27.
Cellular binding-proteins (BP), including CRBP1, CRBP2, CRABP1, CRABP2, and FABP5, shepherd the poorly aqueous soluble retinoids during uptake, metabolism and function. Holo-BP promote efficient use of retinol, a scarce but essential nutrient throughout evolution, by sheltering it and its major metabolite all-trans-retinoic acid from adventitious interactions with the cellular milieu, and by imposing specificity of delivery to enzymes, nuclear receptors and other partners. Apo-BP reflect cellular retinoid status and modify activities of retinoid metabolon enzymes, or exert non-canonical actions. High ligand binding affinities and the nature of ligand sequestration necessitate external factors to prompt retinoid release from holo-BP. One or more of cross-linking, kinetics, and colocalization have identified these factors as RDH, RALDH, CYP26, LRAT, RAR and PPARβ/δ. Michaelis-Menten and other kinetic approaches verify that BP channel retinoids to select enzymes and receptors by protein-protein interactions. Function of the BP and enzymes that constitute the retinoid metabolon depends in part on retinoid exchanges unique to specific pairings. The complexity of these exchanges configure retinol metabolism to meet the diverse functions of all-trans-retinoic acid and its ability to foster contrary outcomes in different cell types, such as inducing apoptosis, differentiation or proliferation. Altered BP expression affects retinoid function, for example, by impairing pancreas development resulting in abnormal glucose and energy metabolism, promoting predisposition to breast cancer, and fostering more severe outcomes in prostate cancer, ovarian adenocarcinoma, and glioblastoma. Yet, the extent of BP interactions with retinoid metabolon enzymes and their impact on retinoid physiology remains incompletely understood.
细胞结合蛋白(BP),包括细胞视黄醇结合蛋白1(CRBP1)、细胞视黄醇结合蛋白2(CRBP2)、细胞视黄酸结合蛋白1(CRABP1)、细胞视黄酸结合蛋白2(CRABP2)和脂肪酸结合蛋白5(FABP5),在摄取、代谢和发挥功能的过程中引导水溶性差的类视黄醇。全载结合蛋白(Holo-BP)通过保护视黄醇及其主要代谢产物全反式视黄酸避免与细胞内环境发生偶然相互作用,并通过将其特异性递送至酶、核受体和其他伴侣,促进视黄醇(一种在整个进化过程中稀缺但必不可少的营养素)的有效利用。脱载结合蛋白(Apo-BP)反映细胞类视黄醇状态,并调节类视黄醇代谢酶的活性,或发挥非经典作用。高配体结合亲和力和配体隔离的性质需要外部因素促使类视黄醇从全载结合蛋白中释放。交联、动力学和共定位中的一个或多个因素已将这些因素确定为视黄醇脱氢酶(RDH)、视黄醛脱氢酶(RALDH)、细胞色素P450 26(CYP26)、卵磷脂视黄醇酰基转移酶(LRAT)、视黄酸受体(RAR)和过氧化物酶体增殖物激活受体β/δ(PPARβ/δ)。米氏方程和其他动力学方法证实,结合蛋白通过蛋白质-蛋白质相互作用将类视黄醇导向特定的酶和受体。构成类视黄醇代谢单元的结合蛋白和酶的功能部分取决于特定配对所特有的类视黄醇交换。这些交换的复杂性决定了视黄醇代谢,以满足全反式视黄酸的多种功能及其在不同细胞类型中产生相反结果的能力,如诱导细胞凋亡、分化或增殖。结合蛋白表达的改变会影响类视黄醇功能,例如,通过损害胰腺发育导致异常的葡萄糖和能量代谢,增加患乳腺癌的易感性,并在前列腺癌、卵巢腺癌和胶质母细胞瘤中导致更严重的后果。然而,结合蛋白与类视黄醇代谢酶的相互作用程度及其对类视黄醇生理学的影响仍未完全了解。