Suppr超能文献

技术说明:一种评估治疗交付系统不确定性对危及器官剂量学影响的方法。

Technical Note: A method to evaluate dosimetric effects on organs-at-risk for treatment delivery systematic uncertainties.

作者信息

Liu Shi, Mazur Thomas R, Fu Yabo, Li H Harold, Mutic Sasa, Yang Deshan

机构信息

Department of Radiation Oncology, Washington University School of Medicine, St. Louis, MO, 63110, USA.

出版信息

Med Phys. 2017 Apr;44(4):1552-1557. doi: 10.1002/mp.12135. Epub 2017 Mar 21.

Abstract

PURPOSE

The aim of this study is to provide a practical method to quantify the dosimetric effects on organs-at-risk (OARs) due to systematic uncertainties in linear accelerator treatment delivery in order to aid external beam treatment planning and raise warnings about additional risks to critical OARs.

METHODS

A dose approximation method, based on geometrical transformations, was developed to automatically estimate perturbations to dose volumes arising from five important potential uncertainties at the time of treatment delivery, including (a) systematic isocenter misalignment between image guidance and beam delivery systems, and systematic errors in, (b) collimator, (c) gantry, (d) couch table, and (e) multi-leaf collimator (MLC) leaf bank positions. The agreement between the estimated dose volume using the dose approximation method and the re-calculated dose volume obtained from the treatment planning system (TPS) was verified using a dose difference test (2% threshold and 0 mm distance-to-agreement). For each type of uncertainty, the worst-case maximal dose values to the most critical OARs (brainstem, chiasm, optic nerves, and spinal cord) were quantitatively evaluated, and compared with the maximal dose values to the corresponding OARs from clinical plans.

RESULTS

Six brain and six T-spine IMRT plans were used for evaluation. The average passing rates of 2% dose difference test were calculated to be 98.9% ± 1.3% for the uncertainties considered in this paper. The average time per patient to automatically analyze the dosimetric effects of all systematic uncertainties is 5.8 s. The worst-case scenarios for each plan, i.e., the largest changes in maximal doses to the OARs, were identified and confirmed to be in agreement with those calculated using the TPS.

CONCLUSION

For a given external beam plan, the proposed dose approximation method allows efficient evaluation of the dosimetric effects of potential patient positioning uncertainties and systematic machine delivery errors on maximal dose to critical OARs. While the same uncertainties can be manually analyzed using the TPS, the proposed method is automatic and computationally inexpensive, and therefore significantly more practical. The proposed method could be useful to provide insights about otherwise unquantified risks and plan robustness during the stage of treatment planning.

摘要

目的

本研究的目的是提供一种实用方法,用于量化直线加速器治疗过程中由于系统不确定性对危及器官(OARs)产生的剂量学影响,以辅助外照射治疗计划制定,并对关键OARs的额外风险发出警示。

方法

开发了一种基于几何变换的剂量近似方法,用于自动估计治疗过程中五个重要潜在不确定性因素引起的剂量体积扰动,包括(a)图像引导和束流传输系统之间的系统等中心错位,以及(b)准直器、(c)机架、(d)治疗床和(e)多叶准直器(MLC)叶片库位置的系统误差。使用剂量差异测试(2%阈值和0毫米一致性距离)验证了使用剂量近似方法估计的剂量体积与从治疗计划系统(TPS)重新计算得到的剂量体积之间的一致性。对于每种不确定性类型,定量评估了对最关键OARs(脑干、视交叉、视神经和脊髓)的最坏情况最大剂量值,并与临床计划中相应OARs的最大剂量值进行比较。

结果

使用六个脑部和六个胸椎IMRT计划进行评估。本文考虑的不确定性因素的2%剂量差异测试平均通过率计算为98.9%±1.3%。自动分析所有系统不确定性因素的剂量学影响,每位患者平均用时5.8秒。确定了每个计划的最坏情况,即OARs最大剂量的最大变化,并确认与使用TPS计算的结果一致。

结论

对于给定的外照射计划,所提出的剂量近似方法能够有效评估潜在患者定位不确定性和系统机器传输误差对关键OARs最大剂量的剂量学影响。虽然使用TPS可以手动分析相同的不确定性,但所提出的方法是自动的且计算成本低,因此显著更实用。所提出的方法有助于在治疗计划阶段提供关于其他未量化风险和计划稳健性的见解。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验