Desharnais Brigitte, Camirand-Lemyre Félix, Mireault Pascal, Skinner Cameron D
Department of Toxicology, Laboratoire de sciences judiciaires et de médecine légale, 1701 rue Parthenais, Montréal, Québec, Canada H2K 3S7.
Department of Chemistry & Biochemistry, Concordia University, 7141 Sherbrooke Street West, Montréal, Québec, Canada H4B 1R6.
J Anal Toxicol. 2017 May 1;41(4):261-268. doi: 10.1093/jat/bkx001.
Calibration model selection is required for all quantitative methods in toxicology and more broadly in bioanalysis. This typically involves selecting the equation order (quadratic or linear) and weighting factor correctly modelizing the data. A mis-selection of the calibration model will generate lower quality control (QC) accuracy, with an error up to 154%. Unfortunately, simple tools to perform this selection and tests to validate the resulting model are lacking. We present a stepwise, analyst-independent scheme for selection and validation of calibration models. The success rate of this scheme is on average 40% higher than a traditional "fit and check the QCs accuracy" method of selecting the calibration model. Moreover, the process was completely automated through a script (available in Supplemental Data 3) running in RStudio (free, open-source software). The need for weighting was assessed through an F-test using the variances of the upper limit of quantification and lower limit of quantification replicate measurements. When weighting was required, the choice between 1/x and 1/x2 was determined by calculating which option generated the smallest spread of weighted normalized variances. Finally, model order was selected through a partial F-test. The chosen calibration model was validated through Cramer-von Mises or Kolmogorov-Smirnov normality testing of the standardized residuals. Performance of the different tests was assessed using 50 simulated data sets per possible calibration model (e.g., linear-no weight, quadratic-no weight, linear-1/x, etc.). This first of two papers describes the tests, procedures and outcomes of the developed procedure using real LC-MS-MS results for the quantification of cocaine and naltrexone.
毒理学以及更广泛的生物分析中的所有定量方法都需要进行校准模型选择。这通常涉及正确选择方程阶数(二次或线性)和加权因子以对数据进行建模。校准模型选择不当会导致较低的质量控制(QC)准确性,误差高达154%。不幸的是,缺乏用于执行此选择的简单工具以及验证所得模型的测试。我们提出了一种逐步的、与分析人员无关的校准模型选择和验证方案。该方案的成功率平均比传统的“拟合并检查QC准确性”校准模型选择方法高40%。此外,该过程通过在RStudio(免费开源软件)中运行的脚本(补充数据3中提供)完全自动化。通过使用定量上限和定量下限重复测量的方差进行F检验来评估加权需求。当需要加权时,通过计算哪种选项产生的加权归一化方差的离散度最小来确定在1/x和1/x²之间的选择。最后,通过部分F检验选择模型阶数。通过对标准化残差进行Cramer-von Mises或Kolmogorov-Smirnov正态性检验来验证所选的校准模型。使用每个可能的校准模型(例如,线性无加权、二次无加权、线性1/x等)50个模拟数据集评估不同测试的性能。这两篇论文中的第一篇描述了使用可卡因和纳曲酮定量的实际LC-MS-MS结果对所开发程序的测试、程序和结果。