Suppr超能文献

基于稳定同位素标记氨基酸的细胞培养定量蛋白质组学分析揭示了亚砷酸盐诱导的人皮肤成纤维细胞中多条信号通路的扰动

SILAC-Based Quantitative Proteomic Analysis Unveils Arsenite-Induced Perturbation of Multiple Pathways in Human Skin Fibroblast Cells.

作者信息

Zhang Fan, Xiao Yongsheng, Wang Yinsheng

机构信息

Department of Chemistry, University of California , Riverside, California 92521-0403, United States.

出版信息

Chem Res Toxicol. 2017 Apr 17;30(4):1006-1014. doi: 10.1021/acs.chemrestox.6b00416. Epub 2017 Feb 14.

Abstract

Humans are exposed to arsenic species through inhalation, ingestion, and dermal contact, which may lead to skin, liver, and bladder cancers as well as cardiovascular and neurological diseases. The mechanisms underlying the cytotoxic and carcinogenic effects of arsenic species, however, remain incompletely understood. To exploit the mechanisms of toxicity of As(III), we employed stable isotope labeling by amino acids in cell culture (SILAC) together with LC/MS/MS analysis to quantitatively assess the As(III)-induced perturbation of the entire proteome of cultured human skin fibroblast cells. Shotgun proteomic analysis on an LTQ-Orbitrap Velos mass spectrometer facilitated the quantification of 3880 proteins, 130 of which were quantified in both forward and reverse SILAC-labeling experiments and displayed significant alterations (>1.5 fold) upon arsenite treatment. Targeted analysis on a triple-quadrupole mass spectrometer in multiple-reaction monitoring (MRM) mode confirmed the quantification results of some select proteins. Ingenuity pathway analysis revealed the arsenite-induced alteration of more than 10 biological pathways, including the Nrf2-mediated oxidative stress response pathway, which is represented by the upregulation of nine proteins in this pathway. In addition, arsenite induced changes in expression levels of a number of selenoproteins and metallothioneins. Together, the results from the present study painted a more complete picture regarding the biological pathways that are altered in human skin fibroblast cells upon arsenite exposure.

摘要

人类通过吸入、摄入和皮肤接触接触砷类物质,这可能导致皮肤癌、肝癌和膀胱癌以及心血管疾病和神经疾病。然而,砷类物质的细胞毒性和致癌作用的潜在机制仍未完全了解。为了探究三价砷(As(III))的毒性机制,我们采用细胞培养中氨基酸稳定同位素标记法(SILAC)并结合液相色谱/串联质谱分析,以定量评估As(III)对培养的人皮肤成纤维细胞整个蛋白质组的干扰。在LTQ-Orbitrap Velos质谱仪上进行鸟枪法蛋白质组分析有助于对3880种蛋白质进行定量,其中130种在正向和反向SILAC标记实验中均被定量,并且在亚砷酸盐处理后显示出显著变化(>1.5倍)。在多反应监测(MRM)模式下,在三重四极杆质谱仪上进行的靶向分析证实了一些选定蛋白质的定量结果。通路分析显示亚砷酸盐诱导了10多种生物通路的改变,包括Nrf2介导的氧化应激反应通路,该通路中有9种蛋白质上调。此外,亚砷酸盐诱导了许多硒蛋白和金属硫蛋白表达水平的变化。总之,本研究结果描绘了一幅关于亚砷酸盐暴露后人皮肤成纤维细胞中改变的生物通路的更完整图景。

相似文献

1
SILAC-Based Quantitative Proteomic Analysis Unveils Arsenite-Induced Perturbation of Multiple Pathways in Human Skin Fibroblast Cells.
Chem Res Toxicol. 2017 Apr 17;30(4):1006-1014. doi: 10.1021/acs.chemrestox.6b00416. Epub 2017 Feb 14.
3
Monomethylarsonous acid inhibited endogenous cholesterol biosynthesis in human skin fibroblasts.
Toxicol Appl Pharmacol. 2014 May 15;277(1):21-9. doi: 10.1016/j.taap.2014.02.020. Epub 2014 Mar 10.
5
Quantitative Assessment of Arsenite-Induced Perturbation of Ubiquitinated Proteome.
Chem Res Toxicol. 2022 Sep 19;35(9):1589-1597. doi: 10.1021/acs.chemrestox.2c00197. Epub 2022 Aug 22.
7
Sodium arsenite-induced myocardial bruise in rats: Ameliorative effect of naringin via TGF-β/Smad and Nrf/HO pathways.
Chem Biol Interact. 2016 Jun 25;253:66-77. doi: 10.1016/j.cbi.2016.05.015. Epub 2016 May 10.

引用本文的文献

1
Quantitative Assessment of Arsenite-Induced Perturbation of Ubiquitinated Proteome.
Chem Res Toxicol. 2022 Sep 19;35(9):1589-1597. doi: 10.1021/acs.chemrestox.2c00197. Epub 2022 Aug 22.
2
Molecular Mechanism of Arsenic-Induced Neurotoxicity including Neuronal Dysfunctions.
Int J Mol Sci. 2021 Sep 17;22(18):10077. doi: 10.3390/ijms221810077.
3
Mass Spectrometry Imaging of Fibroblasts: Promise and Challenge.
Expert Rev Proteomics. 2021 Jun;18(6):423-436. doi: 10.1080/14789450.2021.1941893. Epub 2021 Jul 24.
4
Arsenic Exposure and Compromised Protein Quality Control.
Chem Res Toxicol. 2020 Jul 20;33(7):1594-1604. doi: 10.1021/acs.chemrestox.0c00107. Epub 2020 Jun 2.
5
G3BP1-linked mRNA partitioning supports selective protein synthesis in response to oxidative stress.
Nucleic Acids Res. 2020 Jul 9;48(12):6855-6873. doi: 10.1093/nar/gkaa376.
6
Arsenite Binds to ZNF598 to Perturb Ribosome-Associated Protein Quality Control.
Chem Res Toxicol. 2020 Jul 20;33(7):1644-1652. doi: 10.1021/acs.chemrestox.9b00412. Epub 2020 Apr 30.
7
Lipid Metabolism Alterations in a Rat Model of Chronic and Intergenerational Exposure to Arsenic.
Biomed Res Int. 2019 Oct 15;2019:4978018. doi: 10.1155/2019/4978018. eCollection 2019.
8
Absolute Quantitation of Oxidizable Peptides by Coulometric Mass Spectrometry.
J Am Soc Mass Spectrom. 2019 Nov;30(11):2398-2407. doi: 10.1007/s13361-019-02299-z. Epub 2019 Aug 19.

本文引用的文献

1
2016 update of the PRIDE database and its related tools.
Nucleic Acids Res. 2016 Dec 15;44(22):11033. doi: 10.1093/nar/gkw880. Epub 2016 Sep 28.
3
Arsenite Targets the Zinc Finger Domains of Tet Proteins and Inhibits Tet-Mediated Oxidation of 5-Methylcytosine.
Environ Sci Technol. 2015 Oct 6;49(19):11923-31. doi: 10.1021/acs.est.5b03386. Epub 2015 Sep 23.
5
Involvement of HIF-2α-mediated inflammation in arsenite-induced transformation of human bronchial epithelial cells.
Toxicol Appl Pharmacol. 2013 Oct 15;272(2):542-50. doi: 10.1016/j.taap.2013.06.017. Epub 2013 Jun 26.
6
Arsenic binding to proteins.
Chem Rev. 2013 Oct 9;113(10):7769-92. doi: 10.1021/cr300015c. Epub 2013 Jun 28.
7
Arsenite-induced ROS/RNS generation causes zinc loss and inhibits the activity of poly(ADP-ribose) polymerase-1.
Free Radic Biol Med. 2013 Aug;61:249-56. doi: 10.1016/j.freeradbiomed.2013.04.019. Epub 2013 Apr 18.
8
Arsenic inhibits autophagic flux, activating the Nrf2-Keap1 pathway in a p62-dependent manner.
Mol Cell Biol. 2013 Jun;33(12):2436-46. doi: 10.1128/MCB.01748-12. Epub 2013 Apr 15.
9
Cadmium in metallothioneins.
Met Ions Life Sci. 2013;11:339-71. doi: 10.1007/978-94-007-5179-8_11.
10
Arsenic-mediated activation of the Nrf2-Keap1 antioxidant pathway.
J Biochem Mol Toxicol. 2013 Feb;27(2):99-105. doi: 10.1002/jbt.21463. Epub 2012 Nov 27.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验