Suppr超能文献

通过稳健主成分分析进行一致的宏基因组生物标志物检测。

Consistent metagenomic biomarker detection via robust PCA.

作者信息

Alshawaqfeh Mustafa, Bashaireh Ahmad, Serpedin Erchin, Suchodolski Jan

机构信息

Bioinformatics and Genomic Signal Processing Lab, ECEN Dept., Texas A&M University, College Station, 77843-3128, TX, USA.

College of Veterinary Medicine and Biomedical Sciences, Gastrointestinal Laboratory, Texas A&M University, College Station, 77843-3128, TX, USA.

出版信息

Biol Direct. 2017 Jan 31;12(1):4. doi: 10.1186/s13062-017-0175-4.

Abstract

BACKGROUND

Recent developments of high throughput sequencing technologies allow the characterization of the microbial communities inhabiting our world. Various metagenomic studies have suggested using microbial taxa as potential biomarkers for certain diseases. In practice, the number of available samples varies from experiment to experiment. Therefore, a robust biomarker detection algorithm is needed to provide a set of potential markers irrespective of the number of available samples. Consistent performance is essential to derive solid biological conclusions and to transfer these findings into clinical applications. Surprisingly, the consistency of a metagenomic biomarker detection algorithm with respect to the variation in the experiment size has not been addressed by the current state-of-art algorithms.

RESULTS

We propose a consistency-classification framework that enables the assessment of consistency and classification performance of a biomarker discovery algorithm. This evaluation protocol is based on random resampling to mimic the variation in the experiment size. Moreover, we model the metagenomic data matrix as a superposition of two matrices. The first matrix is a low-rank matrix that models the abundance levels of the irrelevant bacteria. The second matrix is a sparse matrix that captures the abundance levels of the bacteria that are differentially abundant between different phenotypes. Then, we propose a novel Robust Principal Component Analysis (RPCA) based biomarker discovery algorithm to recover the sparse matrix. RPCA belongs to the class of multivariate feature selection methods which treat the features collectively rather than individually. This provides the proposed algorithm with an inherent ability to handle the complex microbial interactions. Comprehensive comparisons of RPCA with the state-of-the-art algorithms on two realistic datasets are conducted. Results show that RPCA consistently outperforms the other algorithms in terms of classification accuracy and reproducibility performance.

CONCLUSIONS

The RPCA-based biomarker detection algorithm provides a high reproducibility performance irrespective of the complexity of the dataset or the number of selected biomarkers. Also, RPCA selects biomarkers with quite high discriminative accuracy. Thus, RPCA is a consistent and accurate tool for selecting taxanomical biomarkers for different microbial populations.

REVIEWERS

This article was reviewed by Masanori Arita and Zoltan Gaspari.

摘要

背景

高通量测序技术的最新进展使得对栖息于我们周围世界的微生物群落进行特征描述成为可能。各种宏基因组学研究已提出将微生物分类群用作某些疾病的潜在生物标志物。在实际应用中,可用样本的数量因实验而异。因此,需要一种强大的生物标志物检测算法,以便无论可用样本数量多少,都能提供一组潜在的标志物。一致的性能对于得出可靠的生物学结论并将这些发现转化为临床应用至关重要。令人惊讶的是,当前的先进算法尚未解决宏基因组生物标志物检测算法在实验规模变化方面的一致性问题。

结果

我们提出了一个一致性分类框架,该框架能够评估生物标志物发现算法的一致性和分类性能。此评估协议基于随机重采样来模拟实验规模的变化。此外,我们将宏基因组数据矩阵建模为两个矩阵的叠加。第一个矩阵是一个低秩矩阵,用于模拟无关细菌的丰度水平。第二个矩阵是一个稀疏矩阵,用于捕获不同表型之间差异丰度的细菌的丰度水平。然后,我们提出了一种基于稳健主成分分析(RPCA)的新型生物标志物发现算法来恢复稀疏矩阵。RPCA属于多变量特征选择方法类别,该方法将特征作为一个整体而非单独处理。这为所提出的算法提供了处理复杂微生物相互作用的内在能力。我们在两个实际数据集上对RPCA与最先进算法进行了全面比较。结果表明,在分类准确性和可重复性性能方面,RPCA始终优于其他算法。

结论

基于RPCA的生物标志物检测算法无论数据集复杂性或所选生物标志物数量如何,都能提供高可重复性性能。此外,RPCA选择的生物标志物具有相当高的判别准确性。因此,RPCA是用于为不同微生物群体选择分类学生物标志物的一致且准确的工具。

审阅者

本文由Masanori Arita和Zoltan Gaspari审阅。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/3fe6/5282705/11dee346196f/13062_2017_175_Fig1_HTML.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验