Wang Guangyi, Zang Shouchi, Wang Xiaoyuan, Yuan Fang, Iu Herbert Ho-Ching
Institute of Modern Circuits and Intelligent Information, Hangzhou Dianzi University, Hangzhou 310018, China.
School of Electrical, Electronic, and Computer Engineering, The University of Western Australia, 35 Stirling Highway, Crawley, WA 6009, Australia.
Chaos. 2017 Jan;27(1):013110. doi: 10.1063/1.4973238.
Memristors and memcapacitors are two new nonlinear elements with memory. In this paper, we present a Hewlett-Packard memristor model and a charge-controlled memcapacitor model and design a new chaotic oscillator based on the two models for exploring the characteristics of memristors and memcapacitors in nonlinear circuits. Furthermore, many basic dynamical behaviors of the oscillator, including equilibrium sets, Lyapunov exponent spectrums, and bifurcations with various circuit parameters, are investigated theoretically and numerically. Our analysis results show that the proposed oscillator possesses complex dynamics such as an infinite number of equilibria, coexistence oscillation, and multi-stability. Finally, a discrete model of the chaotic oscillator is given and the main statistical properties of this oscillator are verified via Digital Signal Processing chip experiments and National Institute of Standards and Technology tests.
忆阻器和忆容器是两种新型的具有记忆功能的非线性元件。在本文中,我们提出了一种惠普忆阻器模型和一种电荷控制忆容器模型,并基于这两种模型设计了一种新型混沌振荡器,以探索忆阻器和忆容器在非线性电路中的特性。此外,从理论和数值两方面研究了该振荡器的许多基本动力学行为,包括平衡点集、李雅普诺夫指数谱以及不同电路参数下的分岔情况。我们的分析结果表明,所提出的振荡器具有诸如无穷多个平衡点、共存振荡和多稳定性等复杂动力学特性。最后,给出了该混沌振荡器的离散模型,并通过数字信号处理芯片实验和美国国家标准与技术研究院测试验证了该振荡器的主要统计特性。