Suppr超能文献

通过具有异速生长调整变量的多元线性回归模型预测的10公里跑步成绩。

10 km running performance predicted by a multiple linear regression model with allometrically adjusted variables.

作者信息

Abad Cesar C C, Barros Ronaldo V, Bertuzzi Romulo, Gagliardi João F L, Lima-Silva Adriano E, Lambert Mike I, Pires Flavio O

机构信息

Department of Physical Education, Senac University Centre, São Paulo, Brazil.

School of Physical Education and Sport, University of São Paulo, Brazil.

出版信息

J Hum Kinet. 2016 Jul 2;51:193-200. doi: 10.1515/hukin-2015-0182. eCollection 2016 Jun 1.

Abstract

The aim of this study was to verify the power of VO, peak treadmill running velocity (PTV), and running economy (RE), unadjusted or allometrically adjusted, in predicting 10 km running performance. Eighteen male endurance runners performed: 1) an incremental test to exhaustion to determine VO and PTV; 2) a constant submaximal run at 12 km·h on an outdoor track for RE determination; and 3) a 10 km running race. Unadjusted (VO, PTV and RE) and adjusted variables (VO, PTV and RE) were investigated through independent multiple regression models to predict 10 km running race time. There were no significant correlations between 10 km running time and either the adjusted or unadjusted VO. Significant correlations (p < 0.01) were found between 10 km running time and adjusted and unadjusted RE and PTV, providing models with effect size > 0.84 and power > 0.88. The allometrically adjusted predictive model was composed of PTV and RE and explained 83% of the variance in 10 km running time with a standard error of the estimate (SEE) of 1.5 min. The unadjusted model composed of a single PVT accounted for 72% of the variance in 10 km running time (SEE of 1.9 min). Both regression models provided powerful estimates of 10 km running time; however, the unadjusted PTV may provide an uncomplicated estimation.

摘要

本研究的目的是验证未经调整或经体质量指数调整的摄氧量(VO)、峰值跑步机跑步速度(PTV)和跑步经济性(RE)在预测10公里跑步成绩方面的效能。18名男性耐力跑者进行了以下测试:1)递增负荷至疲劳测试以确定VO和PTV;2)在室外跑道上以12公里·小时的速度进行恒定亚极量跑步以测定RE;3)一场10公里跑步比赛。通过独立多元回归模型研究未经调整的变量(VO、PTV和RE)和经调整的变量(VO、PTV和RE),以预测10公里跑步比赛时间。10公里跑步时间与未经调整或经调整的VO之间均无显著相关性。在10公里跑步时间与经调整和未经调整的RE及PTV之间发现显著相关性(p < 0.01),所构建模型的效应量> 0.84,效能> 0.88。经体质量指数调整的预测模型由PTV和RE组成,可解释10公里跑步时间方差的83%,估计标准误(SEE)为1.5分钟。由单一PVT组成的未经调整模型可解释10公里跑步时间方差的72%(SEE为1.9分钟)。两个回归模型均能对10公里跑步时间进行有效估计;然而,未经调整的PTV可能提供一种简单的估计方法。

相似文献

1
10 km running performance predicted by a multiple linear regression model with allometrically adjusted variables.
J Hum Kinet. 2016 Jul 2;51:193-200. doi: 10.1515/hukin-2015-0182. eCollection 2016 Jun 1.
2
Physiological Predictors of Maximal Incremental Running Performance.
Front Physiol. 2020 Aug 5;11:979. doi: 10.3389/fphys.2020.00979. eCollection 2020.
3
Heart rate cost of running in track estimates velocity associated with maximal oxygen uptake.
Physiol Behav. 2019 Jun 1;205:33-38. doi: 10.1016/j.physbeh.2019.02.029. Epub 2019 Feb 22.
5
Physiological measures tracking seasonal changes in peak running speed.
Int J Sports Physiol Perform. 2010 Jun;5(2):230-8. doi: 10.1123/ijspp.5.2.230.
6
Relationship between 800-m running performance and accumulated oxygen deficit in middle-distance runners.
Med Sci Sports Exerc. 1998 Nov;30(11):1631-6. doi: 10.1097/00005768-199811000-00012.
7
VO2max and Velocity at VO2max Play a Role in Ultradistance Trail-Running Performance.
Int J Sports Physiol Perform. 2023 Feb 8;18(3):300-305. doi: 10.1123/ijspp.2022-0275. Print 2023 Mar 1.
8
Predicting Trail-Running Performance With Laboratory Exercise Tests and Field-Based Results.
Int J Sports Physiol Perform. 2019 Jan 1;14(1):130-133. doi: 10.1123/ijspp.2018-0390.
9
Overspeed HIIT in Lower-Body Positive Pressure Treadmill Improves Running Performance.
Med Sci Sports Exerc. 2015 Dec;47(12):2571-8. doi: 10.1249/MSS.0000000000000707.
10
Prediction of Performance in a Short Trail Running Race: The Role of Body Composition.
Front Physiol. 2019 Oct 16;10:1306. doi: 10.3389/fphys.2019.01306. eCollection 2019.

引用本文的文献

1
Quantifying Running Economy in Amateur Runners: Evaluating VO and Energy Cost with Model-based Normalization.
J Sports Sci Med. 2025 Sep 1;24(3):684-695. doi: 10.52082/jssm.2025.684. eCollection 2025 Sep.
2
3
Allometric exponents for scaling running economy in human samples: A systematic review and meta-analysis.
Heliyon. 2024 May 14;10(10):e31211. doi: 10.1016/j.heliyon.2024.e31211. eCollection 2024 May 30.
4
Effects of Plyometric Training on Soft and Hard Surfaces for Improving Running Economy.
J Hum Kinet. 2021 Jul 28;79:187-196. doi: 10.2478/hukin-2021-0071. eCollection 2021 Jul.

本文引用的文献

2
The ratio and allometric scaling of speed, power, and strength in elite male rugby union players.
J Strength Cond Res. 2011 Jul;25(7):1968-75. doi: 10.1519/JSC.0b013e3181e4f77c.
3
The validity of incremental exercise testing in discriminating of physiological profiles in elite runners.
Acta Physiol Hung. 2011 Jun;98(2):147-56. doi: 10.1556/APhysiol.98.2011.2.6.
4
Effect of performance level on pacing strategy during a 10-km running race.
Eur J Appl Physiol. 2010 Mar;108(5):1045-53. doi: 10.1007/s00421-009-1300-6. Epub 2009 Dec 11.
5
Test of the classic model for predicting endurance running performance.
Med Sci Sports Exerc. 2010 May;42(5):991-7. doi: 10.1249/MSS.0b013e3181c0669d.
6
Physiological correlates of 2-mile run performance as determined using a novel on-demand treadmill.
Appl Physiol Nutr Metab. 2009 Aug;34(4):763-72. doi: 10.1139/H09-069.
7
Treadmill Velocity Best Predicts 5000-m Run Performance.
Int J Sports Med. 2009 Jan;30(1):40-45. doi: 10.1055/s-2008-1038761.
8
Body mass bias in a competition of muscle strength and aerobic power.
J Strength Cond Res. 2008 Mar;22(2):375-82. doi: 10.1519/JSC.0b013e318161912f.
9
Determinants of 800-m and 1500-m running performance using allometric models.
Med Sci Sports Exerc. 2008 Feb;40(2):345-50. doi: 10.1249/mss.0b013e31815a83dc.
10
Scaling behaviour of VO2 in athletes and untrained individuals.
Ann Hum Biol. 2007 May-Jun;34(3):315-28. doi: 10.1080/03014460701219358.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验