Suppr超能文献

评估过渡态去稳定化对唑类 InhA 抑制剂停留时间变化的贡献。

Evaluating the Contribution of Transition-State Destabilization to Changes in the Residence Time of Triazole-Based InhA Inhibitors.

机构信息

Institute of Chemical Biology and Drug Discovery, Department of Chemistry, Stony Brook University , Stony Brook, New York 11794-3400, United States.

Rudolf Virchow Center for Experimental Biomedicine, Institute for Structural Biology, University of Würzburg , 97080 Würzburg, Germany.

出版信息

J Am Chem Soc. 2017 Mar 8;139(9):3417-3429. doi: 10.1021/jacs.6b11148. Epub 2017 Feb 22.

Abstract

A critical goal of lead compound selection and optimization is to maximize target engagement while minimizing off-target binding. Since target engagement is a function of both the thermodynamics and kinetics of drug-target interactions, it follows that the structures of both the ground states and transition states on the binding reaction coordinate are needed to rationally modulate the lifetime of the drug-target complex. Previously, we predicted the structure of the rate-limiting transition state that controlled the time-dependent inhibition of the enoyl-ACP reductase InhA. This led to the discovery of a triazole-containing diphenyl ether with an increased residence time on InhA due to transition-state destabilization rather than ground-state stabilization. In the present work, we evaluate the inhibition of InhA by 14 triazole-based diphenyl ethers and use a combination of enzyme kinetics and X-ray crystallography to generate a structure-kinetic relationship for time-dependent binding. We show that the triazole motif slows the rate of formation for the final drug-target complex by up to 3 orders of magnitude. In addition, we identify a novel inhibitor with a residence time on InhA of 220 min, which is 3.5-fold longer than that of the INH-NAD adduct formed by the tuberculosis drug, isoniazid. This study provides a clear example in which the lifetime of the drug-target complex is controlled by interactions in the transition state for inhibitor binding rather than the ground state of the enzyme-inhibitor complex, and demonstrates the important role that on-rates can play in drug-target residence time.

摘要

先导化合物的选择和优化的一个关键目标是在最大程度地提高靶标占有率的同时,最小化脱靶结合。由于靶标占有率是药物-靶标相互作用的热力学和动力学的函数,因此需要合理调节药物-靶标复合物的寿命,就需要知道结合反应坐标上的基态和过渡态的结构。此前,我们预测了控制烯酰基辅酶 A 还原酶 InhA 时变抑制的限速过渡态的结构。这导致发现了一种含有三唑的二苯醚,由于过渡态的去稳定化而不是基态的稳定化,它在 InhA 上的停留时间增加。在本工作中,我们评估了 14 种基于三唑的二苯醚对 InhA 的抑制作用,并结合酶动力学和 X 射线晶体学来生成时变结合的结构-动力学关系。我们表明,三唑基序使最终药物-靶标复合物的形成速率最多减慢了 3 个数量级。此外,我们确定了一种新型抑制剂,其在 InhA 上的停留时间为 220 min,比结核药物异烟肼形成的 INH-NAD 加合物长 3.5 倍。该研究提供了一个明确的例子,即药物-靶标复合物的寿命是由抑制剂结合的过渡态相互作用而不是酶-抑制剂复合物的基态控制的,并证明了结合速率在药物-靶标停留时间中的重要作用。

相似文献

1
Evaluating the Contribution of Transition-State Destabilization to Changes in the Residence Time of Triazole-Based InhA Inhibitors.
J Am Chem Soc. 2017 Mar 8;139(9):3417-3429. doi: 10.1021/jacs.6b11148. Epub 2017 Feb 22.
3
The isoniazid-NAD adduct is a slow, tight-binding inhibitor of InhA, the Mycobacterium tuberculosis enoyl reductase: adduct affinity and drug resistance.
Proc Natl Acad Sci U S A. 2003 Nov 25;100(24):13881-6. doi: 10.1073/pnas.2235848100. Epub 2003 Nov 17.
4
Rationalizing the Binding Kinetics for the Inhibition of the Burkholderia pseudomallei FabI1 Enoyl-ACP Reductase.
Biochemistry. 2017 Apr 4;56(13):1865-1878. doi: 10.1021/acs.biochem.6b01048. Epub 2017 Mar 21.
7
Targeting InhA, the FASII enoyl-ACP reductase: SAR studies on novel inhibitor scaffolds.
Curr Top Med Chem. 2012;12(7):672-93. doi: 10.2174/156802612799984535.
10
Rational Modulation of the Induced-Fit Conformational Change for Slow-Onset Inhibition in Mycobacterium tuberculosis InhA.
Biochemistry. 2015 Aug 4;54(30):4683-91. doi: 10.1021/acs.biochem.5b00284. Epub 2015 Jul 24.

引用本文的文献

1
Is Mycobacterial InhA a Suitable Target for Rational Drug Design?
ChemMedChem. 2025 Jul 1;20(13):e202500079. doi: 10.1002/cmdc.202500079. Epub 2025 Apr 29.
2
Catalase-peroxidase (KatG): a potential frontier in tuberculosis drug development.
Crit Rev Biochem Mol Biol. 2024 Dec;59(6):434-446. doi: 10.1080/10409238.2025.2470630. Epub 2025 Feb 27.
3
ModBind, a Rapid Simulation-Based Predictor of Ligand Binding and Off-Rates.
J Chem Inf Model. 2025 Jan 13;65(1):265-274. doi: 10.1021/acs.jcim.4c01805. Epub 2024 Dec 16.
5
Evaluating the Impact of the Tyr158 p on the Mechanism and Inhibition of InhA, the Enoyl-ACP Reductase from .
Biochemistry. 2023 Jun 20;62(12):1943-1952. doi: 10.1021/acs.biochem.2c00606. Epub 2023 Jun 4.
6
The pathogenic mechanism of Mycobacterium tuberculosis: implication for new drug development.
Mol Biomed. 2022 Dec 22;3(1):48. doi: 10.1186/s43556-022-00106-y.
8
Structure-Kinetic Relationship Studies for the Development of Long Residence Time LpxC Inhibitors.
J Med Chem. 2022 Sep 8;65(17):11854-11875. doi: 10.1021/acs.jmedchem.2c00974. Epub 2022 Aug 29.
9
Anti-tubercular activity and molecular docking studies of indolizine derivatives targeting mycobacterial InhA enzyme.
J Enzyme Inhib Med Chem. 2021 Dec;36(1):1472-1487. doi: 10.1080/14756366.2021.1919889.
10
A structure-kinetic relationship study using matched molecular pair analysis.
RSC Med Chem. 2020 Sep 21;11(11):1285-1294. doi: 10.1039/d0md00178c.

本文引用的文献

1
On-rate based optimization of structure-kinetic relationship--surfing the kinetic map.
Drug Discov Today Technol. 2015 Oct;17:9-15. doi: 10.1016/j.ddtec.2015.08.003. Epub 2015 Sep 18.
2
The drug-target residence time model: a 10-year retrospective.
Nat Rev Drug Discov. 2016 Feb;15(2):87-95. doi: 10.1038/nrd.2015.18. Epub 2015 Dec 18.
4
Discovery of bioactive molecules from CuAAC click-chemistry-based combinatorial libraries.
Drug Discov Today. 2016 Jan;21(1):118-132. doi: 10.1016/j.drudis.2015.08.004. Epub 2015 Aug 24.
5
6
Rational Modulation of the Induced-Fit Conformational Change for Slow-Onset Inhibition in Mycobacterium tuberculosis InhA.
Biochemistry. 2015 Aug 4;54(30):4683-91. doi: 10.1021/acs.biochem.5b00284. Epub 2015 Jul 24.
7
Translating slow-binding inhibition kinetics into cellular and in vivo effects.
Nat Chem Biol. 2015 Jun;11(6):416-23. doi: 10.1038/nchembio.1796. Epub 2015 Apr 20.
8
Pharmacodynamics: Which trails are your drugs taking?
Nat Chem Biol. 2015 Jun;11(6):382-3. doi: 10.1038/nchembio.1795. Epub 2015 Apr 20.
9
Design strategies to address kinetics of drug binding and residence time.
Bioorg Med Chem Lett. 2015;25(10):2019-27. doi: 10.1016/j.bmcl.2015.02.027. Epub 2015 Mar 5.
10
A [(32)P]NAD(+)-based method to identify and quantitate long residence time enoyl-acyl carrier protein reductase inhibitors.
Anal Biochem. 2015 Apr 1;474:40-9. doi: 10.1016/j.ab.2014.12.022. Epub 2015 Feb 14.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验