School of Atmospheric Sciences, Sun Yat-sen University, Guangzhou, China.
School of Atmospheric Sciences, Sun Yat-sen University, Guangzhou, China.
Sci Total Environ. 2017 Apr 15;584-585:189-206. doi: 10.1016/j.scitotenv.2017.01.138. Epub 2017 Jan 30.
Vehicular pollutant exposure of residents and pedestrians in high-rise deep street canyons with viaducts and noise barriers requires special concerns because the ventilation capacity is weak and the literature reported inconsistent findings on flow patterns as aspect ratios (building height/street width, H/W) are larger than 2. By conducting computational fluid dynamics (CFD) simulations coupled with the intake fraction iF and the daily pollutant exposure E, this paper investigates the impact of street aspect ratios, viaducts and noise barriers on the flow and vehicular passive pollutant exposure in full-scale street canyons (H/W=1-6, W=24m). iF represents the fraction of total emissions inhaled by a population (1ppm=10), while E means the extent of human beings' contact with pollutants within one day. CFD methodologies of passive pollutant dispersion modeling are successfully validated by wind tunnel data in Meroney et al. (1996). As a novelty, the two-main-vortex pattern start appearing in full-scale street canyons as H/W changes from 4 to 5, however previous studies using wind-tunnel-scale models (H=6cm) reported two to five vortexes as H/W=2-5. This finding is validated by both smoke visualization in scale-model outdoor field experiments (H=1.2m, W=0.6m) and CFD simulations of Reynolds number independence. Cases with two main vortexes (H/W=5-6) experience much larger daily pollutant exposure (10-10mg/m/day) than those with single main vortex as H/W=1-4 (10-10mg/m/day). Moreover leeward-side pollutant exposures are much larger than windward-side as H/W=1-4 while oppositely as H/W=5-6. Assuming a general population density, the total iF is 485-803ppm as H/W=1, 2020-12051ppm as H/W=2-4, and 51112-794026ppm as H/W=5-6. With a single elevated pollutant source, cases with viaducts experience significantly smaller pollutant exposures than cases without viaducts. Road barriers slightly increase pollutant exposure in near-road buildings with H/W=1 while reduce a little as H/W=3 and 5. Two-source cases can experience 2.60-5.52 times pollutant exposure as great as single-source cases.
高架桥和隔音障存在于高层深巷峡谷中,居民和行人可能会接触到车辆污染物,这需要特别关注,因为这些地区的通风能力较弱,而且已有文献对流动模式的研究结果不一致,因为高宽比(建筑高度/街道宽度,H/W)大于 2。本文通过计算流体动力学(CFD)模拟,结合吸入分数 iF 和日污染物暴露量 E,研究了街道高宽比、高架桥和隔音障对全尺度街道峡谷(H/W=1-6,W=24m)中流动和车辆被动污染物暴露的影响。iF 表示人群吸入的总排放量的分数(1ppm=10),而 E 表示人类在一天内接触污染物的程度。Meroney 等人(1996 年)的风洞数据成功验证了被动污染物扩散建模的 CFD 方法。作为一个新颖之处,随着 H/W 从 4 变为 5,两个主涡模式开始出现在全尺度街道峡谷中,而之前使用风洞尺度模型(H=6cm)的研究报告称,当 H/W=2-5 时,存在两到五个涡旋。这一发现通过尺度模型户外现场实验的烟雾可视化(H=1.2m,W=0.6m)和雷诺数独立性的 CFD 模拟得到验证。有两个主涡(H/W=5-6)的情况比只有一个主涡(H/W=1-4)的情况经历更大的日污染物暴露量(~10-10mg/m/天)。此外,当 H/W=1-4 时,背风侧的污染物暴露量比迎风侧大得多,而当 H/W=5-6 时则相反。假设一般的人口密度,iF 总量为 H/W=1 时为 485-803ppm,H/W=2-4 时为 2020-12051ppm,H/W=5-6 时为 51112-794026ppm。对于单个高架污染源,有高架桥的情况下污染物暴露量明显小于没有高架桥的情况。道路障碍物在 H/W=1 时略微增加了近路建筑物中的污染物暴露量,而在 H/W=3 和 5 时则略有减少。双源情况的污染物暴露量可能是单源情况的 2.60-5.52 倍。