Gair Jonathan R, Vallisneri Michele, Larson Shane L, Baker John G
Institute of Astronomy, Madingley Road, Cambridge, CB3 0HA UK.
Jet Propulsion Laboratory, California Institute of Technology, Pasadena, CA 91109 USA.
Living Rev Relativ. 2013;16(1):7. doi: 10.12942/lrr-2013-7. Epub 2013 Sep 12.
We review the tests of general relativity that will become possible with space-based gravitational-wave detectors operating in the ∼ 10 - 1 Hz low-frequency band. The fundamental aspects of gravitation that can be tested include the presence of additional gravitational fields other than the metric; the number and tensorial nature of gravitational-wave polarization states; the velocity of propagation of gravitational waves; the binding energy and gravitational-wave radiation of binaries, and therefore the time evolution of binary inspirals; the strength and shape of the waves emitted from binary mergers and ringdowns; the true nature of astrophysical black holes; and much more. The strength of this science alone calls for the swift implementation of a space-based detector; the remarkable richness of astrophysics, astronomy, and cosmology in the low-frequency gravitational-wave band make the case even stronger.
我们回顾了利用工作在约10 - 1赫兹低频波段的天基引力波探测器将成为可能进行的广义相对论测试。可以测试的引力基本方面包括除度规之外的其他引力场的存在;引力波偏振态的数量和张量性质;引力波的传播速度;双星的结合能和引力波辐射,进而双星合并的时间演化;双星合并和铃宕阶段发出的波的强度和形状;天体物理黑洞的真实性质等等。仅这一科学领域的力量就要求迅速实施天基探测器;低频引力波波段中天体物理学、天文学和宇宙学的显著丰富性使得这一情况更加有力。