Fita P, Grill L, Listkowski A, Piwoński H, Gawinkowski S, Pszona M, Sepioł J, Mengesha E, Kumagai T, Waluk J
Institute of Experimental Physics, Faculty of Physics, University of Warsaw, Pasteura 5, 02-093 Warsaw, Poland.
Department of Physical Chemistry, University of Graz, Heinrichstrasse 28, 8010 Graz, Austria.
Phys Chem Chem Phys. 2017 Feb 15;19(7):4921-4937. doi: 10.1039/c6cp07955e.
We describe various experimental approaches that have been used to obtain a detailed understanding of double hydrogen transfer in porphycene, a model system for intramolecular hydrogen bonding and tautomerism. The emerging picture is that of a multidimensional tautomerization coordinate, with several vibrational modes acting as reaction-promoters or inhibitors through anharmonic intermode coupling. Tunnelling processes, coherent in the case of isolated molecules and incoherent in condensed phases, are found to play a major role even at elevated temperatures. Single-molecule spectroscopy studies reveal large fluctuations in hydrogen transfer rates observed over time for the same chromophore. Scanning probe microscopy is employed to directly observe the structure and tautomerization dynamics of single molecules adsorbed on metal surfaces and demonstrates how the interactions of the molecules with atoms of the supporting surface affect their static and dynamic properties: different tautomeric forms are stabilized for molecules depending on the surface structure and the reaction mechanism can also change, from a concerted to a stepwise transfer. The scanning probe microscopy studies prove that tautomerization in single molecules can be induced by different stimuli: heat, electron attachment, light, and force exerted by the microscope's tip. Possible applications utilizing tautomerism are discussed in combination with molecular architectures on surfaces, which could pave the way for the development of single-molecule electronics.
我们描述了各种实验方法,这些方法被用于深入了解二氢卟吩中的双氢转移,二氢卟吩是分子内氢键和互变异构的一个模型体系。呈现出的图景是一个多维互变异构坐标,其中几种振动模式通过非谐模间耦合充当反应促进剂或抑制剂。发现隧穿过程即使在高温下也起着主要作用,在孤立分子的情况下是相干的,而在凝聚相中是不相干的。单分子光谱研究揭示了同一发色团随时间观察到的氢转移速率存在很大波动。扫描探针显微镜被用于直接观察吸附在金属表面的单分子的结构和互变异构动力学,并展示了分子与支撑表面原子的相互作用如何影响其静态和动态性质:根据表面结构,分子的不同互变异构形式会被稳定下来,反应机制也可能改变,从协同转移变为逐步转移。扫描探针显微镜研究证明,单分子中的互变异构可以由不同的刺激诱导:热、电子附着、光以及显微镜尖端施加的力。结合表面上的分子结构讨论了利用互变异构的可能应用,这可能为单分子电子学的发展铺平道路。