Rizzi Caroline, Peiter Ana Carolina, Oliveira Thaís Larré, Seixas Amilton Clair Pinto, Leal Karen Silva, Hartwig Daiane Drawanz, Seixas Fabiana Kommling, Borsuk Sibele, Dellagostin Odir Antônio
Universidade Federal de Pelotas, Centro de Desenvolvimento Tecnológico, Núcleo de Biotecnologia, Programa de Pós-Graduação em Biotecnologia, Pelotas, RS, Brasil.
Universidade Federal de Pelotas, Instituto de Biologia, Departamento de Microbiologia e Parasitologia, RS, Brasil.
Mem Inst Oswaldo Cruz. 2017 Feb;112(2):123-130. doi: 10.1590/0074-02760160360.
Bovine tuberculosis (TB) is a zoonotic disease caused by Mycobacterium bovis, responsible for causing major losses in livestock. A cost effective alternative to control the disease could be herd vaccination. The bacillus Calmette-Guérin (BCG) vaccine has a limited efficacy against bovine TB, but can improved by over-expression of protective antigens. The M. bovis antigen 85B demonstrates ability to induce protective immune response against bovine TB in animal models. However, current systems for the construction of recombinant BCG expressing multiple copies of the gene result in strains of low genetic stability that rapidly lose the plasmid in vivo. Employing antibiotic resistance as selective markers, these systems also compromise vaccine safety. We previously reported the construction of a stable BCG expression system using auxotrophic complementation as a selectable marker.
The fundamental aim of this study was to construct strains of M. bovis BCG Pasteur and the auxotrophic M. bovis BCG ΔleuD expressing Ag85B and determine their stability in vivo.
Employing the auxotrophic system, we constructed rBCG strains that expressed M. bovis Ag85B and compared their stability with a conventional BCG strain in mice. Stability was measured in terms of bacterial growth on the selective medium and retention of antigen expression.
The auxotrophic complementation system was highly stable after 18 weeks, even during in vivo growth, as the selective pressure and expression of antigen were maintained comparing to the conventional vector.
The Ag85B continuous expression within the host may generate a stronger and long-lasting immune response compared to conventional systems.
牛结核病(TB)是由牛分枝杆菌引起的一种人畜共患病,会给家畜造成重大损失。控制该疾病的一种经济有效的替代方法可能是群体疫苗接种。卡介苗(BCG)疫苗对牛结核病的疗效有限,但可通过保护性抗原的过表达来提高。牛分枝杆菌抗原85B在动物模型中显示出诱导针对牛结核病的保护性免疫反应的能力。然而,目前构建表达该基因多个拷贝的重组卡介苗的系统会导致遗传稳定性低的菌株,这些菌株在体内会迅速丢失质粒。使用抗生素抗性作为选择标记,这些系统也会损害疫苗安全性。我们之前报道了构建一种使用营养缺陷型互补作为选择标记的稳定卡介苗表达系统。
本研究的基本目的是构建表达Ag85B的牛分枝杆菌卡介苗巴斯德菌株和营养缺陷型牛分枝杆菌卡介苗ΔleuD菌株,并确定它们在体内的稳定性。
利用营养缺陷型系统,我们构建了表达牛分枝杆菌Ag85B的重组卡介苗菌株,并在小鼠中将它们的稳定性与传统卡介苗菌株进行比较。通过在选择性培养基上的细菌生长和抗原表达的保留来衡量稳定性。
营养缺陷型互补系统在18周后高度稳定,即使在体内生长期间也是如此,因为与传统载体相比,选择性压力和抗原表达得以维持。
与传统系统相比,宿主内Ag85B的持续表达可能产生更强且持久的免疫反应。