Bürkli A, Sieber N, Seppälä K, Jokela J
EAWAG, Swiss Federal Institute of Aquatic Science and Technology, Department of Aquatic Ecology, Dübendorf, Switzerland.
ETH Zurich, D-USYS, Institute of Integrative Biology, Zürich, Switzerland.
Heredity (Edinb). 2017 Jun;118(6):525-533. doi: 10.1038/hdy.2017.1. Epub 2017 Feb 8.
The rate of self-fertilization (that is, selfing) is a key evolutionary parameter in hermaphroditic species, yet obtaining accurate estimates of selfing rates in natural populations can be technically challenging. Most published estimates are derived from population-level heterozygote deficiency (that is, F) or identity disequilibria (for example, the software RMES (robust multilocus estimate of selfing)). These indirect methods can be applied to population genetic survey data, whereas direct methods using progeny arrays require much larger data sets that are often difficult to collect in natural populations or even require captive breeding. Unfortunately, indirect methods rely on assumptions that can be problematic, such as negating biparental inbreeding, inbreeding disequilibrium and (for F) the presence of null alleles. The performance of indirect estimates against progeny-array estimates is still largely unknown. Here we used both direct progeny-array and indirect population-level methods to estimate the selfing rate in a single natural population of the simultaneously hermaphroditic freshwater snail Radix balthica throughout its reproductive lifespan using 10 highly polymorphic microsatellites. We found that even though progeny arrays (n=1034 field-collected embryos from 60 families) did not reveal a single selfed embryo, F-based selfing rates (n=316 adults) were significantly positive in all 6 sequential population samples. Including a locus with a high frequency of null alleles further biased F-based estimates. Conversely, RMES-based estimates were very similar to progeny-array estimates and proved insensitive to null alleles. The assumptions made by RMES were thus either met or irrelevant in this particular population, making RMES a valid, cost-efficient alternative to progeny arrays.
自体受精率(即自交率)是雌雄同体物种中的一个关键进化参数,然而在自然种群中获得准确的自交率估计在技术上可能具有挑战性。大多数已发表的估计值来自种群水平的杂合子缺陷(即F)或同一性不平衡(例如,软件RMES(稳健的多位点自交估计))。这些间接方法可应用于种群遗传调查数据,而使用子代阵列的直接方法需要大得多的数据集,这些数据集在自然种群中往往难以收集,甚至需要圈养繁殖。不幸的是,间接方法依赖于可能存在问题的假设,例如忽略双亲近交、近交不平衡以及(对于F而言)无效等位基因的存在。间接估计相对于子代阵列估计的性能在很大程度上仍然未知。在这里,我们使用直接子代阵列和间接种群水平方法,利用10个高度多态的微卫星,在同时具有雌雄同体特征的淡水蜗牛静水椎实螺的一个自然种群的整个繁殖寿命期内估计自交率。我们发现,尽管子代阵列(来自60个家系的1034个野外采集胚胎)未发现一个自交胚胎,但在所有6个连续的种群样本中,基于F的自交率(316个成体)均显著为正。纳入一个无效等位基因频率高的位点进一步使基于F的估计产生偏差。相反,基于RMES的估计与子代阵列估计非常相似,并且对无效等位基因不敏感。因此,RMES所做的假设在这个特定种群中要么得到满足,要么不相关,这使得RMES成为子代阵列的一种有效且经济高效的替代方法。