González-Pérez Pedro P, Orta Daniel J, Peña Irving, Flores Eduardo C, Ramírez José U, Beltrán Hiram I, Alas Salomón J
1 Departamento de Matemáticas Aplicadas y Sistemas, Universidad Autónoma Metropolitana Unidad Cuajimalpa , Ciudad de México, México .
2 Departamento de Ciencias Naturales, Universidad Autónoma Metropolitana Unidad Cuajimalpa , Ciudad de México, México .
J Comput Biol. 2017 Oct;24(10):995-1013. doi: 10.1089/cmb.2016.0115. Epub 2017 Feb 8.
Intracellular protein folding (PF) is performed in a highly inhomogeneous, crowded, and correlated environment. Due to this inherent complexity, the study and understanding of PF phenomena is a fundamental issue in the field of computational systems biology. In particular, it is important to use a modeled medium that accurately reflects PF in natural systems. In the current study, we present a simulation wherein PF is carried out within an inhomogeneous modeled medium. Simulation resources included a two-dimensional hydrophobic-polar (HP) model, evolutionary algorithms, and the dual site-bond model. The dual site-bond model was used to develop an environment where HP beads could be folded. Our modeled medium included correlation lengths and fractal-like behavior, which were selected according to HP sequence lengths to induce folding in a crowded environment. Analysis of three benchmark HP sequences showed that the modeled inhomogeneous space played an important role in deeper energy folding and obtained better performance and convergence compared with homogeneous environments. Our computational approach also demonstrated that our correlated network provided a better space for PF. Thus, our approach represents a major advancement in PF simulations, not only for folding but also for understanding functional chemical structure and physicochemical properties of proteins in crowded molecular systems, which normally occur in nature.
细胞内蛋白质折叠(PF)是在高度不均匀、拥挤且相关的环境中进行的。由于这种固有的复杂性,对PF现象的研究和理解是计算系统生物学领域的一个基本问题。特别是,使用能准确反映自然系统中PF的建模介质很重要。在当前研究中,我们展示了一种在不均匀建模介质中进行PF的模拟。模拟资源包括二维疏水-极性(HP)模型、进化算法和双位点-键模型。双位点-键模型用于构建一个能使HP珠子折叠的环境。我们的建模介质包括相关长度和类分形行为,根据HP序列长度进行选择,以在拥挤环境中诱导折叠。对三个基准HP序列的分析表明,与均匀环境相比,建模的不均匀空间在更深层次的能量折叠中发挥了重要作用,并获得了更好的性能和收敛性。我们的计算方法还表明,我们的相关网络为PF提供了更好的空间。因此,我们的方法代表了PF模拟的一项重大进展,不仅适用于折叠,还适用于理解拥挤分子系统中蛋白质的功能化学结构和物理化学性质,而这种系统通常存在于自然界中。