Yeon Solomon, Bell Florian, Shultz Michael, Lawrence Grace, Harpole Michael, Espina Virginia
Center for Applied Proteomics and Molecular Medicine, George Mason University, 10920 George Mason Circle, Life Science Lab Building, MS1A9, Manassas, VA, 20110, USA.
Grace Bio-Labs, Bend, OR, USA.
Methods Mol Biol. 2017;1550:149-170. doi: 10.1007/978-1-4939-6747-6_12.
Generating molecular information in a clinically relevant time frame is the first hurdle to truly integrating precision medicine in health care. Reverse phase protein microarrays are being utilized in clinical trials for quantifying posttranslationally modified signal transduction proteins and cellular signaling pathways, allowing direct comparison of the activation state of proteins from multiple specimens, or individual patient specimens, within the same array. This technology provides diagnostic and therapeutic information critical to precision medicine. To enhance accessibility of this technology, two hurdles must be overcome: data normalization and data acquisition. Herein we describe an unamplified, dual-color signal detection methodology for reverse phase protein microarrays that allows multiplex, within spot data normalization, reduces data acquisition time, simplifies automated spot detection, and provides a stable signal output. This method utilizes Quantum Nanocrystal fluorophore labels (Qdot) substituted for organic fluorophores coupled with an imager (ArrayCAM) that captures images of the microarray rather than sequentially scanning the array. Streamlining and standardizing the data analysis steps with ArrayCAM high-resolution, dual mode chromogenic/fluorescent array imaging overcomes the data acquisition hurdle. The spot location and analysis algorithm provides certain parameter settings that can be tailored to the particular microarray type (fluorescent vs. colorimetric), resulting in greater than 99 % spot location sensitivity. The described method demonstrates equivalent sensitivity for a non-amplified Qdot immunoassay when using automated vs. manual immunostaining procedures.
在临床相关的时间范围内生成分子信息是将精准医学真正融入医疗保健的首要障碍。反相蛋白质微阵列正被用于临床试验,以定量翻译后修饰的信号转导蛋白和细胞信号通路,从而能够在同一阵列中直接比较来自多个样本或个体患者样本的蛋白质激活状态。这项技术为精准医学提供了至关重要的诊断和治疗信息。为了提高该技术的可及性,必须克服两个障碍:数据归一化和数据采集。在此,我们描述了一种用于反相蛋白质微阵列的未扩增双色信号检测方法,该方法允许在斑点内进行多重数据归一化,减少数据采集时间,简化自动斑点检测,并提供稳定的信号输出。该方法使用量子纳米晶体荧光团标记(量子点)替代有机荧光团,并结合成像仪(ArrayCAM),该成像仪可捕获微阵列的图像,而不是顺序扫描阵列。通过ArrayCAM高分辨率、双色显色/荧光阵列成像简化和标准化数据分析步骤,克服了数据采集障碍。斑点定位和分析算法提供了某些可根据特定微阵列类型(荧光与比色)进行定制的参数设置,从而实现了大于99%的斑点定位灵敏度。当使用自动与手动免疫染色程序时,所描述的方法对未扩增的量子点免疫测定显示出同等的灵敏度。