Suppr超能文献

新型叶酸衍生的 Ga-68 基 PET 成像剂的研制。

Development of a New Folate-Derived Ga-68-Based PET Imaging Agent.

机构信息

Department of Radiology, Memorial Sloan Kettering Cancer Center, 1275 York Avenue, New York, NY, 10065, USA.

Small-Animal Imaging Core Facility, Memorial Sloan Kettering Cancer Center, New York, NY, 10065, USA.

出版信息

Mol Imaging Biol. 2017 Oct;19(5):754-761. doi: 10.1007/s11307-017-1049-y.

Abstract

PURPOSE

The folate receptor (FR) has emerged as an interesting diagnostic and therapeutic drug target with many potential applications in oncologic and inflammatory disorders. It was therefore the aim of this study to develop a folate-derived Ga-68-based positron emission tomography (PET) imaging tracer that is straightforward to radiolabel and could be broadly used in clinical studies. We validated its target binding affinity and specificity and compared it to [Tc]EC20, the folate single-photon emission computed tomography (SPECT) imaging tracer that has been most extensively studied clinically so far.

PROCEDURES

The new folic acid-derived PET imaging agent is linked via a polyethyleneglycol linker to the chelator 1,4,7-triazacyclononane-1,4,7-trisacetic acid (NOTA). This new compound, NOTA-folate, was labeled with gallium-68. We tested the probe's stability in human plasma and its selectivity in vitro, using the FR-positive KB cell line as well as the FR-negative A549 cell line. The pharmacokinetic profile of [Ga]NOTA-folate was evaluated in FR-positive KB mouse xenografts. Following intravenous injection of [Ga]NOTA-folate (383 ± 53 μCi), PET/computed tomography (CT) imaging studies as well as biodistribution studies were performed using KB tumor-bearing mice (n = 3). In vitro as well as in vivo studies were performed in parallel with the SPECT imaging tracer [Tc]EC20.

RESULTS

In comparison to [Tc]EC20 (radiochemical yield (RCY) = 82.0 ± 2.9 %, 91.8 ± 2.0 % purity), similar radiochemical yield (87.2 ± 6.9 %) and radiochemical purity (95.6 ± 1.8 %) could be achieved for [Ga]NOTA-folate. For both tracers, we observed high affinity for FR-positive cells in vitro and high plasma stability. In PET/CT and biodistribution studies, [Ga]NOTA-folate appeared to display slightly superior in vivo performance in comparison to [Tc]EC20. In detail, Ga-NOTA-folate showed very good tumor uptake and retention (6.6 ± 1.1 %ID/g), relatively low kidney uptake (21.7 ± 1.1 %ID/g), and very low liver uptake (0.38 ± 0.08 %ID/g). In vivo blocking studies using a fivefold excess of EC20 reduced the tumor uptake to 2.5 ± 0.7 %ID/g, confirming receptor specific binding of [Ga]NOTA-folate in vivo.

CONCLUSION

We validated a new Ga-68 folate-based PET imaging agent with excellent pharmacokinetics and tumor uptake. Based on a head-to-head comparison between both tracers, [Ga]NOTA-folate is a suitable imaging probe for the delineation of FR-positive tumors and a promising candidate for clinical translation.

摘要

目的

叶酸受体(FR)已成为一种有趣的诊断和治疗药物靶点,在肿瘤和炎症性疾病中有许多潜在的应用。因此,本研究旨在开发一种基于叶酸的镓-68 正电子发射断层扫描(PET)成像示踪剂,该示踪剂易于放射性标记,可广泛用于临床研究。我们验证了其靶结合亲和力和特异性,并将其与迄今为止临床研究中研究最广泛的叶酸单光子发射计算机断层扫描(SPECT)成像示踪剂[Tc]EC20 进行了比较。

程序

新的叶酸衍生的 PET 成像剂通过聚乙二醇接头与螯合剂 1,4,7-三氮杂环壬烷-1,4,7-三乙酸(NOTA)连接。这种新的化合物 NOTA-叶酸用镓-68 标记。我们在人血浆中测试了探针的稳定性,并使用 FR 阳性 KB 细胞系和 FR 阴性 A549 细胞系在体外测试了其选择性。在 FR 阳性 KB 小鼠异种移植瘤中评估了[Ga]NOTA-叶酸的药代动力学特征。静脉注射[Ga]NOTA-叶酸(383±53μCi)后,使用 KB 荷瘤小鼠(n=3)进行 PET/计算机断层扫描(CT)成像研究和生物分布研究。体外和体内研究与 SPECT 成像示踪剂[Tc]EC20 同时进行。

结果

与[Tc]EC20(放射性化学产率(RCY)=82.0±2.9%,91.8±2.0%纯度)相比,[Ga]NOTA-叶酸可实现类似的放射性化学产率(87.2±6.9%)和放射性化学纯度(95.6±1.8%)。对于这两种示踪剂,我们在体外观察到对 FR 阳性细胞的高亲和力和高血浆稳定性。在 PET/CT 和生物分布研究中,与[Tc]EC20 相比,[Ga]NOTA-叶酸在体内表现出略微优越的性能。具体而言,Ga-NOTA-叶酸在肿瘤中的摄取和保留非常好(6.6±1.1%ID/g),肾脏摄取相对较低(21.7±1.1%ID/g),肝脏摄取非常低(0.38±0.08%ID/g)。使用 EC20 的五倍过量进行体内阻断研究将肿瘤摄取降低至 2.5±0.7%ID/g,证实了[Ga]NOTA-叶酸在体内的受体特异性结合。

结论

我们验证了一种新的基于镓-68 的叶酸 PET 成像剂,具有优异的药代动力学和肿瘤摄取。基于两种示踪剂的直接比较,[Ga]NOTA-叶酸是一种用于描绘 FR 阳性肿瘤的合适成像探针,也是一种有前途的临床转化候选物。

相似文献

1
Development of a New Folate-Derived Ga-68-Based PET Imaging Agent.
Mol Imaging Biol. 2017 Oct;19(5):754-761. doi: 10.1007/s11307-017-1049-y.
2
Synthesis and Preclinical Evaluation of Folate-NOTA-Al(18)F for PET Imaging of Folate-Receptor-Positive Tumors.
Mol Pharm. 2016 May 2;13(5):1520-7. doi: 10.1021/acs.molpharmaceut.5b00989. Epub 2016 Apr 18.
3
Folate-PEG-NOTA-AlF: A New Folate Based Radiotracer for PET Imaging of Folate Receptor-Positive Tumors.
Mol Pharm. 2017 Dec 4;14(12):4353-4361. doi: 10.1021/acs.molpharmaceut.7b00415. Epub 2017 Nov 1.
4
In vivo imaging of folate receptor positive tumor xenografts using novel 68Ga-NODAGA-folate conjugates.
Mol Pharm. 2012 May 7;9(5):1136-45. doi: 10.1021/mp200418f. Epub 2012 Apr 23.
5
(64)Cu- and (68)Ga-Based PET Imaging of Folate Receptor-Positive Tumors: Development and Evaluation of an Albumin-Binding NODAGA-Folate.
Mol Pharm. 2016 Jun 6;13(6):1979-87. doi: 10.1021/acs.molpharmaceut.6b00143. Epub 2016 May 4.
6
Synthesis and Preclinical Evaluation of [F]AlF-NOTA-Asp-PEG-Folate as a Novel Folate-Receptor-Targeted Tracer for PET Imaging.
J Labelled Comp Radiopharm. 2024 Aug;67(10):334-340. doi: 10.1002/jlcr.4118. Epub 2024 Jul 23.
7
Development of new folate-based PET radiotracers: preclinical evaluation of ⁶⁸Ga-DOTA-folate conjugates.
Eur J Nucl Med Mol Imaging. 2011 Jan;38(1):108-19. doi: 10.1007/s00259-010-1597-8. Epub 2010 Aug 27.
8
Preclinical evaluation of  Ga-labeled peptide CK2 for PET imaging of NRP-1 expression in vivo.
Eur J Nucl Med Mol Imaging. 2024 Jun;51(7):1826-1840. doi: 10.1007/s00259-024-06632-x. Epub 2024 Feb 6.

引用本文的文献

1
Imaging of tumor-associated macrophage dynamics during immunotherapy using a CD163-specific nanobody-based immunotracer.
Proc Natl Acad Sci U S A. 2024 Dec 24;121(52):e2409668121. doi: 10.1073/pnas.2409668121. Epub 2024 Dec 18.
3
Exploration of Ga-DOTA-MAL as a Versatile Vehicle for Facile Labeling of a Variety of Thiol-Containing Bioactive Molecules.
ACS Omega. 2023 Jan 27;8(5):4747-4755. doi: 10.1021/acsomega.2c06720. eCollection 2023 Feb 7.
4
Modern Developments in Bifunctional Chelator Design for Gallium Radiopharmaceuticals.
Molecules. 2022 Dec 26;28(1):203. doi: 10.3390/molecules28010203.
5
Novel PET Imaging of Inflammatory Targets and Cells for the Diagnosis and Monitoring of Giant Cell Arteritis and Polymyalgia Rheumatica.
Front Med (Lausanne). 2022 Jun 6;9:902155. doi: 10.3389/fmed.2022.902155. eCollection 2022.
6
Potential PET tracers for imaging of tumor-associated macrophages.
EJNMMI Radiopharm Chem. 2022 May 8;7(1):11. doi: 10.1186/s41181-022-00163-2.
7
Active Targeted Nanoformulations via Folate Receptors: State of the Art and Future Perspectives.
Pharmaceutics. 2021 Dec 22;14(1):14. doi: 10.3390/pharmaceutics14010014.
8
Imaging Inflammation with Positron Emission Tomography.
Biomedicines. 2021 Feb 19;9(2):212. doi: 10.3390/biomedicines9020212.
9
Pharmacokinetic Properties of Ga-labelled Folic Acid Conjugates: Improvement Using HEHE Tag.
Molecules. 2020 Jun 11;25(11):2712. doi: 10.3390/molecules25112712.

本文引用的文献

1
Synthesis and Preclinical Evaluation of Folate-NOTA-Al(18)F for PET Imaging of Folate-Receptor-Positive Tumors.
Mol Pharm. 2016 May 2;13(5):1520-7. doi: 10.1021/acs.molpharmaceut.5b00989. Epub 2016 Apr 18.
2
Comparative Studies of Three Pairs of α- and γ-Conjugated Folic Acid Derivatives Labeled with Fluorine-18.
Bioconjug Chem. 2016 Jan 20;27(1):74-86. doi: 10.1021/acs.bioconjchem.5b00644. Epub 2015 Dec 11.
3
Vintafolide: a novel targeted therapy for the treatment of folate receptor expressing tumors.
Ther Adv Med Oncol. 2015 Jul;7(4):206-18. doi: 10.1177/1758834015584763.
9
Folate-based radiotracers for PET imaging--update and perspectives.
Molecules. 2013 Apr 29;18(5):5005-31. doi: 10.3390/molecules18055005.
10
In vivo imaging of folate receptor positive tumor xenografts using novel 68Ga-NODAGA-folate conjugates.
Mol Pharm. 2012 May 7;9(5):1136-45. doi: 10.1021/mp200418f. Epub 2012 Apr 23.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验