Suppr超能文献

直接心脏重编程的发现与进展

Discovery and progress of direct cardiac reprogramming.

作者信息

Kojima Hidenori, Ieda Masaki

机构信息

Department of Cardiology, Keio University School of Medicine, Tokyo, Japan.

AMED-PRIME, 35 Shinanomachi, Shinjuku-ku, Tokyo, 160-8582, Japan.

出版信息

Cell Mol Life Sci. 2017 Jun;74(12):2203-2215. doi: 10.1007/s00018-017-2466-4. Epub 2017 Feb 14.

Abstract

Cardiac disease remains a major cause of death worldwide. Direct cardiac reprogramming has emerged as a promising approach for cardiac regenerative therapy. After the discovery of MyoD, a master regulator for skeletal muscle, other single cardiac reprogramming factors (master regulators) have been sought. Discovery of cardiac reprogramming factors was inspired by the finding that multiple, but not single, transcription factors were needed to generate induced pluripotent stem cells (iPSCs) from fibroblasts. We first reported a combination of cardiac-specific transcription factors, Gata4, Mef2c, and Tbx5 (GMT), that could convert mouse fibroblasts into cardiomyocyte-like cells, which were designated as induced cardiomyocyte-like cells (iCMs). Following our first report of cardiac reprogramming, many researchers, including ourselves, demonstrated an improvement in cardiac reprogramming efficiency, in vivo direct cardiac reprogramming for heart regeneration, and cardiac reprogramming in human cells. However, cardiac reprogramming in human cells and adult fibroblasts remains inefficient, and further efforts are needed. We believe that future research elucidating epigenetic barriers and molecular mechanisms of direct cardiac reprogramming will improve the reprogramming efficiency, and that this new technology has great potential for clinical applications.

摘要

心脏病仍然是全球主要的死亡原因。直接心脏重编程已成为心脏再生治疗的一种有前景的方法。在发现骨骼肌的主要调节因子MyoD之后,人们一直在寻找其他单一的心脏重编程因子(主要调节因子)。心脏重编程因子的发现受到以下发现的启发:从成纤维细胞生成诱导多能干细胞(iPSC)需要多个而非单一的转录因子。我们首次报道了心脏特异性转录因子Gata4、Mef2c和Tbx5(GMT)的组合,该组合可将小鼠成纤维细胞转化为心肌样细胞,这些细胞被命名为诱导心肌样细胞(iCM)。在我们首次报道心脏重编程之后,包括我们自己在内的许多研究人员都证明了心脏重编程效率的提高、用于心脏再生的体内直接心脏重编程以及人类细胞中的心脏重编程。然而,人类细胞和成体成纤维细胞中的心脏重编程仍然效率低下,需要进一步努力。我们相信,未来阐明直接心脏重编程的表观遗传障碍和分子机制的研究将提高重编程效率,并且这项新技术在临床应用方面具有巨大潜力。

相似文献

1
Discovery and progress of direct cardiac reprogramming.
Cell Mol Life Sci. 2017 Jun;74(12):2203-2215. doi: 10.1007/s00018-017-2466-4. Epub 2017 Feb 14.
2
The Future of Direct Cardiac Reprogramming: Any Cocktail Variety?
Int J Mol Sci. 2020 Oct 26;21(21):7950. doi: 10.3390/ijms21217950.
3
Production of Cardiomyocyte-Like Cells by Fibroblast Reprogramming with Defined Factors.
Methods Mol Biol. 2021;2239:33-46. doi: 10.1007/978-1-0716-1084-8_3.
4
Chemical Enhancement of In Vitro and In Vivo Direct Cardiac Reprogramming.
Circulation. 2017 Mar 7;135(10):978-995. doi: 10.1161/CIRCULATIONAHA.116.024692. Epub 2016 Nov 10.
6
In Vitro Conversion of Murine Fibroblasts into Cardiomyocyte-Like Cells.
Methods Mol Biol. 2021;2158:155-170. doi: 10.1007/978-1-0716-0668-1_12.
7
Induction of human cardiomyocyte-like cells from fibroblasts by defined factors.
Proc Natl Acad Sci U S A. 2013 Jul 30;110(31):12667-72. doi: 10.1073/pnas.1304053110. Epub 2013 Jul 16.
8
Direct reprogramming as a route to cardiac repair.
Semin Cell Dev Biol. 2022 Feb;122:3-13. doi: 10.1016/j.semcdb.2021.05.019. Epub 2021 Jul 8.
9
Direct Cardiac Reprogramming for Cardiovascular Regeneration and Differentiation.
Keio J Med. 2020 Sep 25;69(3):49-58. doi: 10.2302/kjm.2019-0008-OA. Epub 2020 Jan 9.
10
Direct reprogramming of fibroblasts into functional cardiomyocytes by defined factors.
Cell. 2010 Aug 6;142(3):375-86. doi: 10.1016/j.cell.2010.07.002.

引用本文的文献

2
FGF4 and ascorbic acid enhance the maturation of induced cardiomyocytes by activating JAK2-STAT3 signaling.
Exp Mol Med. 2024 Oct;56(10):2231-2245. doi: 10.1038/s12276-024-01321-z. Epub 2024 Oct 1.
3
4
MEF2C/p300-mediated epigenetic remodeling promotes the maturation of induced cardiomyocytes.
Stem Cell Reports. 2023 Jun 13;18(6):1274-1283. doi: 10.1016/j.stemcr.2023.05.001.
5
Master regulator genes and their impact on major diseases.
PeerJ. 2020 Oct 6;8:e9952. doi: 10.7717/peerj.9952. eCollection 2020.
7
Zebrafish as a Smart Model to Understand Regeneration After Heart Injury: How Fish Could Help Humans.
Front Cardiovasc Med. 2019 Aug 6;6:107. doi: 10.3389/fcvm.2019.00107. eCollection 2019.
8
Single-Cell Transcriptomic Analyses of Cell Fate Transitions during Human Cardiac Reprogramming.
Cell Stem Cell. 2019 Jul 3;25(1):149-164.e9. doi: 10.1016/j.stem.2019.05.020. Epub 2019 Jun 20.
9
Rational Reprogramming of Cellular States by Combinatorial Perturbation.
Cell Rep. 2019 Jun 18;27(12):3486-3499.e6. doi: 10.1016/j.celrep.2019.05.079.
10
Development, Proliferation, and Growth of the Mammalian Heart.
Mol Ther. 2018 Jul 5;26(7):1599-1609. doi: 10.1016/j.ymthe.2018.05.022. Epub 2018 Jun 19.

本文引用的文献

1
Chemical Enhancement of In Vitro and In Vivo Direct Cardiac Reprogramming.
Circulation. 2017 Mar 7;135(10):978-995. doi: 10.1161/CIRCULATIONAHA.116.024692. Epub 2016 Nov 10.
2
Mesp1 Marked Cardiac Progenitor Cells Repair Infarcted Mouse Hearts.
Sci Rep. 2016 Aug 19;6:31457. doi: 10.1038/srep31457.
3
Conversion of human fibroblasts into functional cardiomyocytes by small molecules.
Science. 2016 Jun 3;352(6290):1216-20. doi: 10.1126/science.aaf1502. Epub 2016 Apr 28.
4
Re-patterning of H3K27me3, H3K4me3 and DNA methylation during fibroblast conversion into induced cardiomyocytes.
Stem Cell Res. 2016 Mar;16(2):507-18. doi: 10.1016/j.scr.2016.02.037. Epub 2016 Feb 27.
5
Bmi1 Is a Key Epigenetic Barrier to Direct Cardiac Reprogramming.
Cell Stem Cell. 2016 Mar 3;18(3):382-95. doi: 10.1016/j.stem.2016.02.003.
7
Gaining myocytes or losing fibroblasts: Challenges in cardiac fibroblast reprogramming for infarct repair.
J Mol Cell Cardiol. 2016 Apr;93:108-14. doi: 10.1016/j.yjmcc.2015.11.029. Epub 2015 Nov 27.
8
Revisiting Cardiac Cellular Composition.
Circ Res. 2016 Feb 5;118(3):400-9. doi: 10.1161/CIRCRESAHA.115.307778. Epub 2015 Dec 3.
9
Fibroblast Growth Factors and Vascular Endothelial Growth Factor Promote Cardiac Reprogramming under Defined Conditions.
Stem Cell Reports. 2015 Dec 8;5(6):1128-1142. doi: 10.1016/j.stemcr.2015.10.019. Epub 2015 Nov 25.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验