Suppr超能文献

从典型序列到典型基因型。

From typical sequences to typical genotypes.

作者信息

Tal Omri, Tran Tat Dat, Portegies Jacobus

机构信息

Max-Planck-Institute for Mathematics in the Sciences, Inselstrasse 22, D-04103 Leipzig, Germany.

出版信息

J Theor Biol. 2017 Apr 21;419:159-183. doi: 10.1016/j.jtbi.2017.02.010. Epub 2017 Feb 12.

Abstract

We demonstrate an application of a core notion of information theory, typical sequences and their related properties, to analysis of population genetic data. Based on the asymptotic equipartition property (AEP) for nonstationary discrete-time sources producing independent symbols, we introduce the concepts of typical genotypes and population entropy and cross entropy rate. We analyze three perspectives on typical genotypes: a set perspective on the interplay of typical sets of genotypes from two populations, a geometric perspective on their structure in high dimensional space, and a statistical learning perspective on the prospects of constructing typical-set based classifiers. In particular, we show that such classifiers have a surprising resilience to noise originating from small population samples, and highlight the potential for further links between inference and communication.

摘要

我们展示了信息论的一个核心概念——典型序列及其相关属性在群体遗传数据分析中的应用。基于产生独立符号的非平稳离散时间源的渐近均分性质(AEP),我们引入了典型基因型、群体熵和交叉熵率的概念。我们从三个角度分析典型基因型:从两个群体的典型基因型集相互作用的集合角度、从它们在高维空间中的结构的几何角度,以及从构建基于典型集的分类器的前景的统计学习角度。特别是,我们表明这种分类器对来自小群体样本的噪声具有惊人的抗性,并强调了推理与通信之间进一步联系的潜力。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验