Suppr超能文献

用于对抗神经退行性疾病的定制蛋白解聚酶

Designer protein disaggregases to counter neurodegenerative disease.

作者信息

Shorter James

机构信息

Department of Biochemistry and Biophysics, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA 19104, United States of America.

出版信息

Curr Opin Genet Dev. 2017 Jun;44:1-8. doi: 10.1016/j.gde.2017.01.008. Epub 2017 Feb 14.

Abstract

Protein misfolding and aggregation unify several devastating neurodegenerative disorders, including Alzheimer's disease, Parkinson's disease, and amyotrophic lateral sclerosis. There are no effective therapeutics for these disorders and none that target the reversal of the aberrant protein misfolding and aggregation that cause disease. Here, I showcase important advances to define, engineer, and apply protein disaggregases to mitigate deleterious protein misfolding and counter neurodegeneration. I focus on two exogenous protein disaggregases, Hsp104 from yeast and gene 3 protein from bacteriophages, as well as endogenous human protein disaggregases, including: (a) Hsp110, Hsp70, Hsp40, and small heat-shock proteins; (b) HtrA1; and (c) NMNAT2 and Hsp90. I suggest that protein-disaggregase modalities can be channeled to treat numerous fatal and presently incurable neurodegenerative diseases.

摘要

蛋白质错误折叠和聚集是包括阿尔茨海默病、帕金森病和肌萎缩侧索硬化症在内的几种毁灭性神经退行性疾病的共同特征。目前尚无针对这些疾病的有效治疗方法,也没有针对导致疾病的异常蛋白质错误折叠和聚集进行逆转的治疗方法。在此,我展示了在定义、设计和应用蛋白质解聚酶以减轻有害蛋白质错误折叠和对抗神经退行性变方面取得的重要进展。我重点介绍两种外源性蛋白质解聚酶,即来自酵母的Hsp104和来自噬菌体的基因3蛋白,以及内源性人类蛋白质解聚酶,包括:(a) Hsp110、Hsp70、Hsp40和小分子热休克蛋白;(b) HtrA1;以及(c) NMNAT2和Hsp90。我认为蛋白质解聚酶疗法可用于治疗多种致命且目前无法治愈的神经退行性疾病。

相似文献

1
Designer protein disaggregases to counter neurodegenerative disease.
Curr Opin Genet Dev. 2017 Jun;44:1-8. doi: 10.1016/j.gde.2017.01.008. Epub 2017 Feb 14.
2
Engineering therapeutic protein disaggregases.
Mol Biol Cell. 2016 May 15;27(10):1556-60. doi: 10.1091/mbc.E15-10-0693.
3
Reversing deleterious protein aggregation with re-engineered protein disaggregases.
Cell Cycle. 2014;13(9):1379-83. doi: 10.4161/cc.28709. Epub 2014 Apr 2.
6
Engineering enhanced protein disaggregases for neurodegenerative disease.
Prion. 2015;9(2):90-109. doi: 10.1080/19336896.2015.1020277.
7
Chaperone-assisted protein aggregate reactivation: Different solutions for the same problem.
Arch Biochem Biophys. 2015 Aug 15;580:121-34. doi: 10.1016/j.abb.2015.07.006. Epub 2015 Jul 6.
8
Effect of endogenous Hsp104 chaperone in yeast models of sporadic and familial Parkinson's disease.
Int J Biochem Cell Biol. 2014 Oct;55:87-92. doi: 10.1016/j.biocel.2014.08.013. Epub 2014 Aug 23.
9
Mechanistic Insights into Hsp104 Potentiation.
J Biol Chem. 2016 Mar 4;291(10):5101-15. doi: 10.1074/jbc.M115.707976. Epub 2016 Jan 8.

引用本文的文献

1
Polyserine-mediated targeting of FAF2/UBXD8 ameliorates tau aggregation.
Neuron. 2025 Aug 29. doi: 10.1016/j.neuron.2025.08.002.
2
Design principles to tailor Hsp104 therapeutics.
Cell Rep. 2024 Dec 24;43(12):115005. doi: 10.1016/j.celrep.2024.115005. Epub 2024 Dec 12.
3
The emerging role of the HTRA1 protease in brain microvascular disease.
Front Dement. 2023 Apr 12;2:1146055. doi: 10.3389/frdem.2023.1146055. eCollection 2023.
4
Broken but not beaten: Challenge of reducing the amyloids pathogenicity by degradation.
J Adv Res. 2025 Apr;70:45-62. doi: 10.1016/j.jare.2024.04.018. Epub 2024 Apr 19.
5
Nuclear-import receptors as gatekeepers of pathological phase transitions in ALS/FTD.
Mol Neurodegener. 2024 Jan 22;19(1):8. doi: 10.1186/s13024-023-00698-1.
6
Tuning Hsp104 specificity to selectively detoxify α-synuclein.
Mol Cell. 2023 Sep 21;83(18):3314-3332.e9. doi: 10.1016/j.molcel.2023.07.029. Epub 2023 Aug 24.
8
OMICS and Other Advanced Technologies in Mycological Applications.
J Fungi (Basel). 2023 Jun 19;9(6):688. doi: 10.3390/jof9060688.
10
Phase separation in fungi.
Nat Microbiol. 2023 Mar;8(3):375-386. doi: 10.1038/s41564-022-01314-6. Epub 2023 Feb 13.

本文引用的文献

1
NPT088 reduces both amyloid-β and tau pathologies in transgenic mice.
Alzheimers Dement (N Y). 2016 Jul 14;2(3):141-155. doi: 10.1016/j.trci.2016.06.004. eCollection 2016 Sep.
2
Gene therapy: Gene-editing therapy for neurological disease.
Nat Rev Neurol. 2017 Jan;13(1):7-9. doi: 10.1038/nrneurol.2016.190. Epub 2016 Dec 16.
3
Alternative modes of client binding enable functional plasticity of Hsp70.
Nature. 2016 Nov 17;539(7629):448-451. doi: 10.1038/nature20137. Epub 2016 Oct 26.
4
Circumventing Brain Barriers: Nanovehicles for Retroaxonal Therapeutic Delivery.
Trends Mol Med. 2016 Nov;22(11):983-993. doi: 10.1016/j.molmed.2016.09.004. Epub 2016 Oct 5.
5
Pathological α-synuclein transmission initiated by binding lymphocyte-activation gene 3.
Science. 2016 Sep 30;353(6307). doi: 10.1126/science.aah3374.
6
The antibody aducanumab reduces Aβ plaques in Alzheimer's disease.
Nature. 2016 Sep 1;537(7618):50-6. doi: 10.1038/nature19323.
7
A Surveillance Function of the HSPB8-BAG3-HSP70 Chaperone Complex Ensures Stress Granule Integrity and Dynamism.
Mol Cell. 2016 Sep 1;63(5):796-810. doi: 10.1016/j.molcel.2016.07.021. Epub 2016 Aug 25.
8
Molecular tweezers for lysine and arginine - powerful inhibitors of pathologic protein aggregation.
Chem Commun (Camb). 2016 Oct 15;52(76):11318-34. doi: 10.1039/c6cc04640a. Epub 2016 Aug 22.
9
Analysis of protein-coding genetic variation in 60,706 humans.
Nature. 2016 Aug 18;536(7616):285-91. doi: 10.1038/nature19057.
10
Holdase activity of secreted Hsp70 masks amyloid-β42 neurotoxicity in Drosophila.
Proc Natl Acad Sci U S A. 2016 Aug 30;113(35):E5212-21. doi: 10.1073/pnas.1608045113. Epub 2016 Aug 16.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验