Dos Santos Schmidt Thassya C, Slotte Aril, Kennedy James, Sundby Svein, Johannessen Arne, Óskarsson Gudmundur J, Kurita Yutaka, Stenseth Nils C, Kjesbu Olav Sigurd
Institute of Marine Research, N-5817 Bergen, Norway.
Department of Biology, University of Bergen, N-5020 Bergen, Norway.
Proc Natl Acad Sci U S A. 2017 Mar 7;114(10):2634-2639. doi: 10.1073/pnas.1700349114. Epub 2017 Feb 21.
Following general life history theory, immediate reproductive investment (egg mass × fecundity/body mass) in oviparous teleosts is a consequence of both present and past environmental influences. This clarification questions the frequent use of season-independent (general) fecundity formulas in marine fish recruitment studies based on body metrics only. Here we test the underlying assumption of no lag effect on gametogenesis in the planktivorous, determinate-fecundity Atlantic herring () displaying large plasticity in egg mass and fecundity, examining Norwegian summer-autumn spawning herring (NASH), North Sea autumn-spawning herring (NSAH), and Norwegian spring-spawning herring (NSSH). No prior reproductive information existed for NASH. Compared with the 1960s, recent reproductive investment had dropped markedly, especially for NSAH, likely reflecting long-term changes in zooplankton biography and productivity. As egg mass was characteristically small for autumn spawners, although large for spring spawners (cf. different larval feeding conditions), fecundity was the most dynamic factor within reproductive investment. For the data-rich NSSH, we showed evidence that transient, major declines in zooplankton abundance resulted in low fecundity over several subsequent seasons, even if Fulton's condition factor (K) turned high. Temporal trends in ( on total length) were, however, informative. These results clarify that fecundity is defined by () dynamics of primary (standing stock) oocytes and () down-regulation of secondary oocytes, both processes intimately linked to environmental conditions but operating at different timescales. Thus, general fecundity formulas typically understate interannual variability in actual fecundity. We therefore argue for the use of segmented fecundity formulas linked to dedicated monitoring programs.
根据一般生活史理论,卵生硬骨鱼的即时生殖投资(卵块×繁殖力/体重)是当前和过去环境影响的结果。这一阐释对海洋鱼类补充量研究中仅基于身体指标频繁使用与季节无关(通用)的繁殖力公式提出了质疑。在此,我们测试了在卵块和繁殖力方面表现出较大可塑性的食浮游生物、繁殖力确定的大西洋鲱()中配子发生不存在滞后效应这一潜在假设,研究了挪威夏秋季产卵鲱(NASH)、北海秋季产卵鲱(NSAH)和挪威春季产卵鲱(NSSH)。NASH此前没有生殖信息。与20世纪60年代相比,近期的生殖投资显著下降,尤其是NSAH,这可能反映了浮游动物生活史和生产力的长期变化。由于秋季产卵者的卵块通常较小,尽管春季产卵者的卵块较大(参见不同的幼体摄食条件),但繁殖力是生殖投资中最具动态变化的因素。对于数据丰富的NSSH,我们有证据表明浮游动物数量的短暂大幅下降导致了随后几个季节繁殖力较低,即使富尔顿条件因子(K)升高。然而,(基于全长)的时间趋势提供了有用信息。这些结果表明,繁殖力由()初级(现存)卵母细胞的动态变化和()次级卵母细胞的下调所定义,这两个过程都与环境条件密切相关,但在不同的时间尺度上起作用。因此,通用的繁殖力公式通常低估了实际繁殖力的年际变异性。我们因此主张使用与专门监测计划相关的分段繁殖力公式。