Kumar Naresh, Labille Jérôme, Bossa Nathan, Auffan Mélanie, Doumenq Pierre, Rose Jérôme, Bottero Jean-Yves
CEREGE, CNRS Aix Marseille Université-IRD-Collège de France, UM 7330, 13545, Aix-en-Provence, France.
International Consortium for the Environmental Implications of Nanotechnology iCEINT, Aix-en-Provence, France.
Environ Sci Pollut Res Int. 2017 Apr;24(10):9269-9277. doi: 10.1007/s11356-017-8597-1. Epub 2017 Feb 22.
In this study, we assessed the transportability of zero valent iron nanoparticles (nano-Fe) coated with different organics (carboxy methyl cellulose (CMC), poly acrylic acid (PAA), and xanthan gum) in standard porous sand and in real aquifer sediments. Our results suggest that the organic surface coatings optimized for nano-Fe in porous sand media do not necessarily reflect the same transportability in real field aquifer sediment. Xanthan gum-coated nano-Fe showed highest transportability in standard porous sand, but the performance was much lower in real aquifer sediment, whereas the PAA-coated nano-Fe particle showed better transportability both in aquifer sediment and in porous sand media. Nano-Fe without organic surface coating exhibited very low transportability and was largely retained by the porous medium. Our results suggest that the molecular weight and surface charge density of the organic may play a role in transportability of these nanoparticles. To assess the impact of organic coating on the nanoparticle reactivity with contaminants, we also conducted batch tests to follow TCE degradation using different surface coatings and found no significant difference albeit a minor delay in kinetics. Using theoretical calculations, we also estimated the potential distance traveled by nanoparticles in porous sand as well as in aquifer sediment. Our results suggest that using xanthan gum and PAA as surface coating, nano-Fe could travel up to 9.8 and 4.1 m, respectively, in the porous sand media as compared to 0.2 and 0.9 m in real aquifer sediment, respectively. Graphical abstract Nanoparticle mobility in porous sand vs and aquifer sediment.
在本研究中,我们评估了包覆不同有机物(羧甲基纤维素(CMC)、聚丙烯酸(PAA)和黄原胶)的零价铁纳米颗粒(纳米铁)在标准多孔砂和实际含水层沉积物中的迁移性。我们的结果表明,在多孔砂介质中针对纳米铁优化的有机表面涂层并不一定反映其在实际现场含水层沉积物中的相同迁移性。黄原胶包覆的纳米铁在标准多孔砂中显示出最高的迁移性,但在实际含水层沉积物中的性能要低得多,而PAA包覆的纳米铁颗粒在含水层沉积物和多孔砂介质中均表现出较好的迁移性。没有有机表面涂层的纳米铁迁移性非常低,并且在很大程度上被多孔介质截留。我们的结果表明,有机物的分子量和表面电荷密度可能在这些纳米颗粒的迁移性中起作用。为了评估有机涂层对纳米颗粒与污染物反应性的影响,我们还进行了批次试验,以跟踪使用不同表面涂层的三氯乙烯降解情况,结果发现尽管动力学上有轻微延迟,但没有显著差异。通过理论计算,我们还估计了纳米颗粒在多孔砂以及含水层沉积物中可能行进的潜在距离。我们的结果表明,使用黄原胶和PAA作为表面涂层,纳米铁在多孔砂介质中分别可以行进高达9.8米和4.1米,而在实际含水层沉积物中分别为0.2米和0.9米。图形摘要:多孔砂与含水层沉积物中的纳米颗粒迁移率。