Suppr超能文献

自组织隐马尔可夫模型映射(SOHMMM):生物序列聚类与聚类可视化

Self-Organizing Hidden Markov Model Map (SOHMMM): Biological Sequence Clustering and Cluster Visualization.

作者信息

Ferles Christos, Beaufort William-Scott, Ferle Vanessa

机构信息

Scientific Computing Research Unit and Department of Chemistry, University of Cape Town, Rondebosch, Cape Town, South Africa.

Institute of Marine Biology and Genetics, Center for Marine Research, East Attica, Greece.

出版信息

Methods Mol Biol. 2017;1552:83-101. doi: 10.1007/978-1-4939-6753-7_6.

Abstract

The present study devises mapping methodologies and projection techniques that visualize and demonstrate biological sequence data clustering results. The Sequence Data Density Display (SDDD) and Sequence Likelihood Projection (SLP) visualizations represent the input symbolical sequences in a lower-dimensional space in such a way that the clusters and relations of data elements are depicted graphically. Both operate in combination/synergy with the Self-Organizing Hidden Markov Model Map (SOHMMM). The resulting unified framework is in position to analyze automatically and directly raw sequence data. This analysis is carried out with little, or even complete absence of, prior information/domain knowledge.

摘要

本研究设计了映射方法和投影技术,用于可视化和展示生物序列数据聚类结果。序列数据密度显示(SDDD)和序列似然投影(SLP)可视化以这样一种方式在低维空间中表示输入的符号序列,即数据元素的聚类和关系以图形方式描绘。两者都与自组织隐马尔可夫模型图(SOHMMM)结合/协同运行。由此产生的统一框架能够自动且直接地分析原始序列数据。这种分析在几乎没有或甚至完全没有先验信息/领域知识的情况下进行。

相似文献

2
Self-Organizing Hidden Markov Model Map (SOHMMM).
Neural Netw. 2013 Dec;48:133-47. doi: 10.1016/j.neunet.2013.07.011. Epub 2013 Aug 13.
3
Sequence-based protein structure prediction using a reduced state-space hidden Markov model.
Comput Biol Med. 2007 Sep;37(9):1211-24. doi: 10.1016/j.compbiomed.2006.10.014. Epub 2006 Dec 11.
5
Application of Hidden Markov Models in Biomolecular Simulations.
Methods Mol Biol. 2017;1552:29-41. doi: 10.1007/978-1-4939-6753-7_3.
6
Probabilistic models for biological sequences: selection and Maximum Likelihood estimation.
Int J Bioinform Res Appl. 2006;2(3):305-24. doi: 10.1504/IJBRA.2006.010607.
7
TreeSOM: Cluster analysis in the self-organizing map.
Neural Netw. 2006 Jul-Aug;19(6-7):935-49. doi: 10.1016/j.neunet.2006.05.003. Epub 2006 Jun 15.
8
9
Hidden Markov Models for Protein Domain Homology Identification and Analysis.
Methods Mol Biol. 2017;1555:47-58. doi: 10.1007/978-1-4939-6762-9_3.
10
Combined prediction of transmembrane topology and signal peptide of beta-barrel proteins: using a hidden Markov model and genetic algorithms.
Comput Biol Med. 2010 Jul;40(7):621-8. doi: 10.1016/j.compbiomed.2010.04.006. Epub 2010 May 21.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验