Suppr超能文献

具有实时计算机辅助检测腰椎解剖结构的手持式超声系统的成像性能:一项可行性研究。

Imaging Performance of a Handheld Ultrasound System With Real-Time Computer-Aided Detection of Lumbar Spine Anatomy: A Feasibility Study.

作者信息

Tiouririne Mohamed, Dixon Adam J, Mauldin F William, Scalzo David, Krishnaraj Arun

机构信息

From the *Department of Anesthesiology, University of Virginia Health System; †Department of Biomedical Engineering, University of Virginia; ‡Rivanna Medical; and §Department of Radiology, University of Virginia Health System, Charlottesville, VA.

出版信息

Invest Radiol. 2017 Aug;52(8):447-455. doi: 10.1097/RLI.0000000000000361.

Abstract

OBJECTIVES

The aim of this study was to evaluate the imaging performance of a handheld ultrasound system and the accuracy of an automated lumbar spine computer-aided detection (CAD) algorithm in the spines of human subjects.

MATERIALS AND METHODS

This study was approved by the institutional review board of the University of Virginia. The authors designed a handheld ultrasound system with enhanced bone image quality and fully automated CAD of lumbar spine anatomy. The imaging performance was evaluated by imaging the lumbar spines of 68 volunteers with body mass index between 18.5 and 48 kg/m. The accuracy, sensitivity, and specificity of the lumbar spine CAD algorithm were assessed by comparing the algorithm's results to ground-truth segmentations of neuraxial anatomy provided by radiologists.

RESULTS

The lumbar spine CAD algorithm detected the epidural space with a sensitivity of 94.2% (95% confidence interval [CI], 85.1%-98.1%) and a specificity of 85.5% (95% CI, 81.7%-88.6%) and measured its depth with an error of approximately ±0.5 cm compared with measurements obtained manually from the 2-dimensional ultrasound images. The spine midline was detected with a sensitivity of 93.9% (95% CI, 85.8%-97.7%) and specificity of 91.3% (95% CI, 83.6%-96.9%), and its lateral position within the ultrasound image was measured with an error of approximately ±0.3 cm. The bone enhancement imaging mode produced images with 5.1- to 10-fold enhanced bone contrast when compared with a comparable handheld ultrasound imaging system.

CONCLUSIONS

The results of this study demonstrate the feasibility of CAD for assisting with real-time interpretation of ultrasound images of the lumbar spine at the bedside.

摘要

目的

本研究旨在评估手持式超声系统的成像性能以及自动腰椎计算机辅助检测(CAD)算法在人体脊柱中的准确性。

材料与方法

本研究经弗吉尼亚大学机构审查委员会批准。作者设计了一种具有增强骨图像质量和腰椎解剖结构全自动CAD功能的手持式超声系统。通过对68名体重指数在18.5至48kg/m之间的志愿者的腰椎进行成像来评估成像性能。通过将该算法的结果与放射科医生提供的神经轴解剖结构的真实分割结果进行比较,评估腰椎CAD算法的准确性、敏感性和特异性。

结果

腰椎CAD算法检测硬膜外腔的敏感性为94.2%(95%置信区间[CI],85.1%-98.1%),特异性为85.5%(95%CI,81.7%-88.6%),与从二维超声图像手动获得的测量结果相比,测量其深度的误差约为±0.5cm。检测脊柱中线的敏感性为93.9%(95%CI,85.8%-97.7%),特异性为91.3%(95%CI,83.6%-96.9%),测量其在超声图像中的横向位置的误差约为±0.3cm。与可比的手持式超声成像系统相比,骨增强成像模式产生的图像骨对比度提高了5.1至10倍。

结论

本研究结果证明了CAD在床边辅助实时解读腰椎超声图像的可行性。

相似文献

3
Automatic detection of lumbar anatomy in ultrasound images of human subjects.
IEEE Trans Biomed Eng. 2010 Sep;57(9):2248-56. doi: 10.1109/TBME.2010.2048709. Epub 2010 May 10.
4
An augmented reality system for epidural anesthesia (AREA): prepuncture identification of vertebrae.
IEEE Trans Biomed Eng. 2013 Sep;60(9):2636-44. doi: 10.1109/TBME.2013.2262279. Epub 2013 May 13.
5
Spine surface detection from local phase-symmetry enhanced ridges in ultrasound images.
Med Phys. 2017 Nov;44(11):5755-5767. doi: 10.1002/mp.12509. Epub 2017 Sep 21.
6
7
Quantitative ultrasound assessment of the facet joint in the lumbar spine: a feasibility study.
Ultrasound Med Biol. 2015 May;41(5):1226-32. doi: 10.1016/j.ultrasmedbio.2014.12.025. Epub 2015 Jan 28.
8
Lumbar Ultrasound Image Feature Extraction and Classification with Support Vector Machine.
Ultrasound Med Biol. 2015 Oct;41(10):2677-89. doi: 10.1016/j.ultrasmedbio.2015.05.015. Epub 2015 Jun 26.
10
Sonoanatomy relevant for ultrasound-guided central neuraxial blocks via the paramedian approach in the lumbar region.
Br J Radiol. 2012 Jul;85(1015):e262-9. doi: 10.1259/bjr/93508121. Epub 2011 Oct 18.

引用本文的文献

1
Ultrasound guidance versus anatomical landmarks for neuraxial anaesthesia in adults.
Cochrane Database Syst Rev. 2025 May 27;5(5):CD014964. doi: 10.1002/14651858.CD014964.pub2.
2
Ultrasound Image Quality Comparison Between a Handheld Ultrasound Transducer and Mid-Range Ultrasound Machine.
POCUS J. 2022 Apr 21;7(1):154-159. doi: 10.24908/pocus.v7i1.15052. eCollection 2022.
3
A novel ultrasound software system for lumbar level identification in obstetric patients.
Can J Anaesth. 2022 Oct;69(10):1211-1219. doi: 10.1007/s12630-022-02300-6. Epub 2022 Aug 9.
4
Artificial intelligence enhanced ultrasound (AI-US) in a severe obese parturient: a case report.
Ultrasound J. 2022 Aug 3;14(1):34. doi: 10.1186/s13089-022-00283-5.
5
Computer-Aided Diagnosis for Determining Sagittal Spinal Curvatures Using Deep Learning and Radiography.
J Digit Imaging. 2022 Aug;35(4):846-859. doi: 10.1007/s10278-022-00592-0. Epub 2022 Mar 11.
6
Automatic Spine Ultrasound Segmentation for Scoliosis Visualization and Measurement.
IEEE Trans Biomed Eng. 2020 Nov;67(11):3234-3241. doi: 10.1109/TBME.2020.2980540. Epub 2020 Mar 12.
7
Discrimination of thoracic spine from muscle based on their difference in ultrasound reflection and scattering characteristics.
J Med Ultrason (2001). 2020 Jan;47(1):3-11. doi: 10.1007/s10396-019-00964-0. Epub 2019 Aug 21.

本文引用的文献

1
Ultrasound guidance for lumbar puncture.
Neurol Clin Pract. 2016 Aug;6(4):358-368. doi: 10.1212/CPJ.0000000000000265.
2
Ultrasound guidance for upper and lower limb blocks.
Cochrane Database Syst Rev. 2015 Sep 11;2015(9):CD006459. doi: 10.1002/14651858.CD006459.pub3.
3
Residency training: a failed lumbar puncture is more about obesity than lack of ability.
Neurology. 2015 Mar 10;84(10):e69-72. doi: 10.1212/WNL.0000000000001335.
4
Ultrasound guidance versus anatomical landmarks for internal jugular vein catheterization.
Cochrane Database Syst Rev. 2015 Jan 9;1(1):CD006962. doi: 10.1002/14651858.CD006962.pub2.
5
Lumbar Neuraxial Ultrasound for Spinal and Epidural Anesthesia: A Systematic Review and Meta-Analysis.
Reg Anesth Pain Med. 2016 Mar-Apr;41(2):251-60. doi: 10.1097/AAP.0000000000000184.
6
CUSUM method for construction of trainee spinal ultrasound learning curves following standardised teaching.
Anaesth Intensive Care. 2014 Jul;42(4):480-6. doi: 10.1177/0310057X1404200409.
8
Handheld real-time volumetric imaging of the spine: technology development.
J Med Eng Technol. 2014 Mar;38(2):100-3. doi: 10.3109/03091902.2013.877989.
10
Failed epidural: causes and management.
Br J Anaesth. 2012 Aug;109(2):144-54. doi: 10.1093/bja/aes214. Epub 2012 Jun 26.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验