Weaver Jessica, Taylor-Fishwick David A
Department of Microbiology and Molecular Cell Biology, Eastern Virginia Medical School, Norfolk, VA 23507, USA.
Department of Microbiology and Molecular Cell Biology, Eastern Virginia Medical School, Norfolk, VA 23507, USA.
Biochem Biophys Res Commun. 2017 Apr 1;485(2):290-294. doi: 10.1016/j.bbrc.2017.02.089. Epub 2017 Feb 21.
Redox stress related loss of beta cell function is a feature of diabetes. Exposure of beta cells and islets to inflammatory mediators elevates reactive oxygen species (ROS) and beta cell dysfunction. Direct molecular manipulation of NADPH oxidase-1 (NOX-1) has identified a key role for NOX-1 in cytokine-induced beta cell dysfunction. Plasmid driven elevation of NOX-1 resulted in elevated ROS, loss of glucose-stimulated-insulin-secretion and increased apoptosis. These outcomes on beta cell function are analogous to cytokine treatment. In contrast, reduction of NOX-1 expression, by shRNA, conferred protection to beta cells and islets from the damaging effects of inflammatory cytokines. Collectively, these data support the therapeutic potential for NOX-1 inhibition in diabetes.
氧化还原应激相关的β细胞功能丧失是糖尿病的一个特征。β细胞和胰岛暴露于炎症介质会升高活性氧(ROS)并导致β细胞功能障碍。对NADPH氧化酶-1(NOX-1)进行直接分子操作已确定NOX-1在细胞因子诱导的β细胞功能障碍中起关键作用。质粒驱动的NOX-1升高导致ROS升高、葡萄糖刺激的胰岛素分泌丧失和细胞凋亡增加。这些对β细胞功能的影响与细胞因子治疗相似。相比之下,通过短发夹RNA(shRNA)降低NOX-1表达可使β细胞和胰岛免受炎症细胞因子的破坏作用。总体而言,这些数据支持了抑制NOX-1在糖尿病治疗中的潜力。