Suppr超能文献

超快研究氨基蒽醌药物中光诱导的电荷转移

Ultrafast investigation of photoinduced charge transfer in aminoanthraquinone pharmaceutical product.

机构信息

State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, Wuhan Institute of Physics and Mathematics, Chinese Academy of Sciences, Wuhan, Hubei 430071, China.

出版信息

Sci Rep. 2017 Feb 24;7:43419. doi: 10.1038/srep43419.

Abstract

We investigated the mechanism of intramolecular charge transfer and the following radiationless dynamics of the excited states of 1-aminoanthraquinone using steady state and time-resolved absorption spectroscopy combined with quantum chemical calculations. Following photoexcitation with 460 nm, conformational relaxation via twisting of the amino group, charge transfer and the intersystem crossing (ISC) processes have been established to be the major relaxation pathways responsible for the ultrafast nonradiative of the excited S state. Intramolecular proton transfer, which could be induced by intramolecular hydrogen bonding is inspected and excluded. Time-dependent density functional theory (TDDFT) calculations reveal the change of the dipole moments of the S and S states along the twisted coordinate of the amino group, indicating the mechanism of twisted intra-molecular charge transfer (TICT). The timescale of TICT is measured to be 5 ps due to the conformational relaxation and a barrier on the S potential surface. The ISC from the S state to the triplet manifold is a main deactivation pathway with the decay time of 28 ps. Our results observed here have yield a physically intuitive and complete picture of the photoinduced charge transfer and radiationless dynamics in anthraquinone pharmaceutial products.

摘要

我们使用稳态和时间分辨吸收光谱结合量子化学计算研究了 1-氨基蒽醌激发态的分子内电荷转移和随后的无辐射动力学。在 460nm 光激发后,通过氨基的扭转构象松弛、电荷转移和系间窜越(ISC)过程已被确立为负责激发 S 态超快非辐射的主要弛豫途径。检查并排除了由分子内氢键诱导的分子内质子转移。时变密度泛函理论(TDDFT)计算表明 S 和 S 态沿着氨基扭转坐标的偶极矩变化,表明扭曲分子内电荷转移(TICT)的机制。由于构象松弛和 S 势能面上的势垒,TICT 的时间尺度测量为 5ps。S 态到三重态的 ISC 是主要的失活途径,衰减时间为 28ps。我们在这里观察到的结果提供了蒽醌药物中光诱导电荷转移和无辐射动力学的物理直观和完整的图像。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验