Suppr超能文献

基于切比雪夫多项式递归的条纹投影轮廓术的时间相位展开

Temporal phase unwrapping for fringe projection profilometry aided by recursion of Chebyshev polynomials.

作者信息

Xing Shuo, Guo Hongwei

出版信息

Appl Opt. 2017 Feb 20;56(6):1591-1602. doi: 10.1364/AO.56.001591.

Abstract

This paper presents a temporal phase-unwrapping method for fringe projection profilometry. With it, a sequence of phase-shifting fringe patterns is projected onto the measured object for getting the wrapped phase map and achieving a high measurement resolution, and an additional sequence corresponding to Chebyshev polynomials is used for determining their fringe orders. For effectuating this method, we deduce an algorithm by use of the recursive property of Chebyshev polynomials. This algorithm, combined with a correction operation in the least-squares sense, allows us to accurately estimate the fringe orders in the presence of noise. Experimental results demonstrate the proposed method to be effective in restoring the absolute phase maps of fringe patterns.

摘要

本文提出了一种用于条纹投影轮廓术的时间相位展开方法。利用该方法,将一系列相移条纹图案投影到被测物体上,以获取包裹相位图并实现高测量分辨率,同时使用与切比雪夫多项式对应的另一序列来确定条纹级数。为实现该方法,我们利用切比雪夫多项式的递归特性推导了一种算法。该算法与最小二乘意义下的校正操作相结合,使我们能够在存在噪声的情况下准确估计条纹级数。实验结果表明,所提出的方法在恢复条纹图案的绝对相位图方面是有效的。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验