文献检索文档翻译深度研究
Suppr Zotero 插件Zotero 插件
邀请有礼套餐&价格历史记录

新学期,新优惠

限时优惠:9月1日-9月22日

30天高级会员仅需29元

1天体验卡首发特惠仅需5.99元

了解详情
不再提醒
插件&应用
Suppr Zotero 插件Zotero 插件浏览器插件Mac 客户端Windows 客户端微信小程序
高级版
套餐订阅购买积分包
AI 工具
文献检索文档翻译深度研究
关于我们
关于 Suppr公司介绍联系我们用户协议隐私条款
关注我们

Suppr 超能文献

核心技术专利:CN118964589B侵权必究
粤ICP备2023148730 号-1Suppr @ 2025

Clustering cancer gene expression data by projective clustering ensemble.

作者信息

Yu Xianxue, Yu Guoxian, Wang Jun

机构信息

College of Computer and Information Science, Southwest University, Beibei, Chongqing, China.

出版信息

PLoS One. 2017 Feb 24;12(2):e0171429. doi: 10.1371/journal.pone.0171429. eCollection 2017.


DOI:10.1371/journal.pone.0171429
PMID:28234920
原文链接:https://pmc.ncbi.nlm.nih.gov/articles/PMC5325197/
Abstract

Gene expression data analysis has paramount implications for gene treatments, cancer diagnosis and other domains. Clustering is an important and promising tool to analyze gene expression data. Gene expression data is often characterized by a large amount of genes but with limited samples, thus various projective clustering techniques and ensemble techniques have been suggested to combat with these challenges. However, it is rather challenging to synergy these two kinds of techniques together to avoid the curse of dimensionality problem and to boost the performance of gene expression data clustering. In this paper, we employ a projective clustering ensemble (PCE) to integrate the advantages of projective clustering and ensemble clustering, and to avoid the dilemma of combining multiple projective clusterings. Our experimental results on publicly available cancer gene expression data show PCE can improve the quality of clustering gene expression data by at least 4.5% (on average) than other related techniques, including dimensionality reduction based single clustering and ensemble approaches. The empirical study demonstrates that, to further boost the performance of clustering cancer gene expression data, it is necessary and promising to synergy projective clustering with ensemble clustering. PCE can serve as an effective alternative technique for clustering gene expression data.

摘要
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/6f05/5325197/b1487601e10f/pone.0171429.g009.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/6f05/5325197/ec6662363b01/pone.0171429.g001.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/6f05/5325197/c3eee1f5b425/pone.0171429.g002.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/6f05/5325197/3ce4543f7bd3/pone.0171429.g003.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/6f05/5325197/510ca76670ac/pone.0171429.g004.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/6f05/5325197/17e95c12ed4b/pone.0171429.g005.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/6f05/5325197/79eccc008f76/pone.0171429.g006.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/6f05/5325197/813d58e9964d/pone.0171429.g007.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/6f05/5325197/7fdea067968a/pone.0171429.g008.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/6f05/5325197/b1487601e10f/pone.0171429.g009.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/6f05/5325197/ec6662363b01/pone.0171429.g001.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/6f05/5325197/c3eee1f5b425/pone.0171429.g002.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/6f05/5325197/3ce4543f7bd3/pone.0171429.g003.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/6f05/5325197/510ca76670ac/pone.0171429.g004.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/6f05/5325197/17e95c12ed4b/pone.0171429.g005.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/6f05/5325197/79eccc008f76/pone.0171429.g006.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/6f05/5325197/813d58e9964d/pone.0171429.g007.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/6f05/5325197/7fdea067968a/pone.0171429.g008.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/6f05/5325197/b1487601e10f/pone.0171429.g009.jpg

相似文献

[1]
Clustering cancer gene expression data by projective clustering ensemble.

PLoS One. 2017-2-24

[2]
Fuzzy ensemble clustering based on random projections for DNA microarray data analysis.

Artif Intell Med. 2009

[3]
Hybrid fuzzy cluster ensemble framework for tumor clustering from biomolecular data.

IEEE/ACM Trans Comput Biol Bioinform. 2013

[4]
Knowledge based cluster ensemble for cancer discovery from biomolecular data.

IEEE Trans Nanobioscience. 2011-7-7

[5]
Double Selection Based Semi-Supervised Clustering Ensemble for Tumor Clustering from Gene Expression Profiles.

IEEE/ACM Trans Comput Biol Bioinform. 2014

[6]
LCE: a link-based cluster ensemble method for improved gene expression data analysis.

Bioinformatics. 2010-5-5

[7]
DICLENS: divisive clustering ensemble with automatic cluster number.

IEEE/ACM Trans Comput Biol Bioinform. 2011-9-27

[8]
Toward Multidiversified Ensemble Clustering of High-Dimensional Data: From Subspaces to Metrics and Beyond.

IEEE Trans Cybern. 2022-11

[9]
Multi-class clustering of cancer subtypes through SVM based ensemble of pareto-optimal solutions for gene marker identification.

PLoS One. 2010-11-12

[10]
Adaptive Fuzzy Consensus Clustering Framework for Clustering Analysis of Cancer Data.

IEEE/ACM Trans Comput Biol Bioinform. 2015

引用本文的文献

[1]
Silencing APLNR enhances the radiosensitivity of prostate cancer by modulating the PI3K/AKT/mTOR signaling pathway.

Clin Transl Oncol. 2025-4

[2]
omicsGAT: Graph Attention Network for Cancer Subtype Analyses.

Int J Mol Sci. 2022-9-6

[3]
Long non-coding RNA 00960 promoted the aggressiveness of lung adenocarcinoma via the miR-124a/SphK1 axis.

Bioengineered. 2022-1

[4]
Blind method for discovering number of clusters in multidimensional datasets by regression on linkage hierarchies generated from random data.

PLoS One. 2020-1-23

[5]
Cluster analysis on high dimensional RNA-seq data with applications to cancer research - An evaluation study.

PLoS One. 2019-12-5

[6]
Analyzing the similarity of samples and genes by MG-PCC algorithm, t-SNE-SS and t-SNE-SG maps.

BMC Bioinformatics. 2018-12-17

[7]
Eleven quick tips for running an interdisciplinary short course for new graduate students.

PLoS Comput Biol. 2018-3-29

[8]
Cancer Detection in Microarray Data Using a Modified Cat Swarm Optimization Clustering Approach.

Asian Pac J Cancer Prev. 2017-12-29

[9]
Robust Feature Selection Approach for Patient Classification using Gene Expression Data.

Bioinformation. 2017-10-31

[10]
Robustification of Naïve Bayes Classifier and Its Application for Microarray Gene Expression Data Analysis.

Biomed Res Int. 2017-8-7

本文引用的文献

[1]
A Study of the Comparability of External Criteria for Hierarchical Cluster Analysis.

Multivariate Behav Res. 1986-10-1

[2]
Epigenetic Heterogeneity of B-Cell Lymphoma: DNA Methylation, Gene Expression and Chromatin States.

Genes (Basel). 2015-9-7

[3]
Adaptive Fuzzy Consensus Clustering Framework for Clustering Analysis of Cancer Data.

IEEE/ACM Trans Comput Biol Bioinform. 2015

[4]
A network-assisted co-clustering algorithm to discover cancer subtypes based on gene expression.

BMC Bioinformatics. 2014-2-4

[5]
Hybrid fuzzy cluster ensemble framework for tumor clustering from biomolecular data.

IEEE/ACM Trans Comput Biol Bioinform. 2013

[6]
An interactive approach to multiobjective clustering of gene expression patterns.

IEEE Trans Biomed Eng. 2012-9-28

[7]
Biclustering of gene expression data by correlation-based scatter search.

BioData Min. 2011-1-24

[8]
Clustering cancer gene expression data: a comparative study.

BMC Bioinformatics. 2008-11-27

[9]
Fuzzy ensemble clustering based on random projections for DNA microarray data analysis.

Artif Intell Med. 2009

[10]
Approaches to working in high-dimensional data spaces: gene expression microarrays.

Br J Cancer. 2008-3-25

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

推荐工具

医学文档翻译智能文献检索