Suppr超能文献

通过投影聚类集成对癌症基因表达数据进行聚类

Clustering cancer gene expression data by projective clustering ensemble.

作者信息

Yu Xianxue, Yu Guoxian, Wang Jun

机构信息

College of Computer and Information Science, Southwest University, Beibei, Chongqing, China.

出版信息

PLoS One. 2017 Feb 24;12(2):e0171429. doi: 10.1371/journal.pone.0171429. eCollection 2017.

Abstract

Gene expression data analysis has paramount implications for gene treatments, cancer diagnosis and other domains. Clustering is an important and promising tool to analyze gene expression data. Gene expression data is often characterized by a large amount of genes but with limited samples, thus various projective clustering techniques and ensemble techniques have been suggested to combat with these challenges. However, it is rather challenging to synergy these two kinds of techniques together to avoid the curse of dimensionality problem and to boost the performance of gene expression data clustering. In this paper, we employ a projective clustering ensemble (PCE) to integrate the advantages of projective clustering and ensemble clustering, and to avoid the dilemma of combining multiple projective clusterings. Our experimental results on publicly available cancer gene expression data show PCE can improve the quality of clustering gene expression data by at least 4.5% (on average) than other related techniques, including dimensionality reduction based single clustering and ensemble approaches. The empirical study demonstrates that, to further boost the performance of clustering cancer gene expression data, it is necessary and promising to synergy projective clustering with ensemble clustering. PCE can serve as an effective alternative technique for clustering gene expression data.

摘要

基因表达数据分析对基因治疗、癌症诊断及其他领域具有至关重要的意义。聚类是分析基因表达数据的一种重要且有前景的工具。基因表达数据通常具有大量基因但样本有限的特点,因此人们提出了各种投影聚类技术和集成技术来应对这些挑战。然而,将这两种技术协同起来以避免维度灾难问题并提高基因表达数据聚类的性能是颇具挑战性的。在本文中,我们采用投影聚类集成(PCE)来整合投影聚类和集成聚类的优势,并避免组合多个投影聚类时的困境。我们在公开可用的癌症基因表达数据上的实验结果表明,与其他相关技术(包括基于降维的单聚类和集成方法)相比,PCE 能够将基因表达数据的聚类质量平均至少提高 4.5%。实证研究表明,为了进一步提高癌症基因表达数据的聚类性能,将投影聚类与集成聚类协同起来是必要且有前景的。PCE 可以作为一种有效的替代技术用于基因表达数据的聚类。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/6f05/5325197/ec6662363b01/pone.0171429.g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验