Cross Kevin P, Britton Samantha, Mangulins Rebecca, Money Tomas G A, Robertson R Meldrum
Centre for Neuroscience Studies, Queen's University, Kingston, Ontario K7L 3N6, Canada.
Department of Biology, Queen's University, Kingston, Ontario K7L 3N6, Canada.
J Insect Physiol. 2017 Apr;98:336-346. doi: 10.1016/j.jinsphys.2017.02.006. Epub 2017 Feb 22.
We compared how different metabolic stressors, anoxic coma and food deprivation, affected signaling in neural tissue. We used the locust's Descending Contralateral Movement Detector (DCMD) interneuron because its large axon, high firing frequencies, and rapid conduction velocity make it energetically expensive. We exposed locusts to a 30min anoxic coma or 1day of food deprivation and found contrasting effects on signaling within the axon. After a prior anoxic coma, the DCMD fired fewer high-frequency (>200Hz) action potentials (APs) (Control: 12.4±1.6; Coma: 6.3±0.9) with a reduction in axonal conduction velocity (CV) at all frequencies (∼4-8%) when presented with a standard looming visual stimulus. Prior anoxic coma was also associated with a loss of supernormal conduction by reducing both the number of supernormal APs and the firing frequency with the highest CV. Initially, food deprivation caused a significant increase in the number of low- and high-frequency APs with no differences observed in CV. After controlling for isolation, food deprivation resulted in an increase in high-frequency APs (>200Hz: Control: 17.1±1.7; Food-deprived: 19.9±1.3) and an increase in relative conduction velocity for frequencies >150Hz (∼2%). Action potentials of food-deprived animals had a smaller half-width (Control: 0.45±0.02ms; Food-deprived: 0.40±0.01ms) and decay time (Control: 0.62±0.03ms; Food-deprived: 0.54±0.02ms). Our data indicate that the effects of metabolic stress on neural signaling can be stressor-dependent.
我们比较了不同的代谢应激源(缺氧昏迷和食物剥夺)如何影响神经组织中的信号传导。我们使用了蝗虫的下行对侧运动探测器(DCMD)中间神经元,因为其粗大的轴突、高放电频率和快速的传导速度使其能量消耗巨大。我们将蝗虫暴露于30分钟的缺氧昏迷或1天的食物剥夺状态下,发现对轴突内的信号传导有不同的影响。在经历过一次缺氧昏迷后,当给予标准的逼近视觉刺激时,DCMD发放的高频(>200Hz)动作电位(APs)减少(对照组:12.4±1.6;昏迷组:6.3±0.9),且所有频率下的轴突传导速度(CV)均降低(约4-8%)。先前的缺氧昏迷还与超常传导的丧失有关,这是通过减少超常APs的数量以及具有最高CV的放电频率来实现的。最初,食物剥夺导致低频和高频APs的数量显著增加,而CV没有差异。在控制了隔离因素后,食物剥夺导致高频APs增加(>200Hz:对照组:17.1±1.7;食物剥夺组:19.9±1.3),且频率>150Hz时相对传导速度增加(约2%)。食物剥夺动物的动作电位半峰宽较小(对照组:0.45±0.02ms;食物剥夺组:0.40±0.01ms),衰减时间也较短(对照组:0.62±0.03ms;食物剥夺组:0.54±0.02ms)。我们的数据表明,代谢应激对神经信号传导的影响可能取决于应激源。