Mondal Abhisek, Datta Saumen
Structural Biology and Bioinformatics Division, Council of Scientific and Industrial Research - Indian Institute of Chemical Biology, 4 Raja SC Mullick Road, Jadavpur, Kolkata, West Bengal, 700032, India.
Proteins. 2017 Jun;85(6):1046-1055. doi: 10.1002/prot.25271. Epub 2017 Mar 17.
Hydrogen bond plays a unique role in governing macromolecular interactions with exquisite specificity. These interactions govern the fundamental biological processes like protein folding, enzymatic catalysis, molecular recognition. Despite extensive research work, till date there is no proper report available about the hydrogen bond's energy surface with respect to its geometric parameters, directly derived from proteins. Herein, we have deciphered the potential energy landscape of hydrogen bond directly from the macromolecular coordinates obtained from Protein Data Bank using quantum mechanical electronic structure calculations. The findings unravel the hydrogen bonding energies of proteins in parametric space. These data can be used to understand the energies of such directional interactions involved in biological molecules. Quantitative characterization has also been performed using Shannon entropic calculations for atoms participating in hydrogen bond. Collectively, our results constitute an improved way of understanding hydrogen bond energies in case of proteins and complement the knowledge-based potential. Proteins 2017; 85:1046-1055. © 2017 Wiley Periodicals, Inc.
氢键在以极高的特异性调控大分子相互作用方面发挥着独特作用。这些相互作用支配着诸如蛋白质折叠、酶催化、分子识别等基本生物学过程。尽管开展了广泛的研究工作,但迄今为止,尚无关于直接源自蛋白质的氢键能量表面与其几何参数关系的恰当报告。在此,我们利用量子力学电子结构计算,直接从蛋白质数据库获得的大分子坐标中解析出了氢键的势能面。这些发现揭示了参数空间中蛋白质的氢键能量。这些数据可用于理解生物分子中此类定向相互作用的能量。还对参与氢键的原子进行了香农熵计算以进行定量表征。总体而言,我们的结果构成了一种更好地理解蛋白质中氢键能量的方法,并补充了基于知识的势能。《蛋白质》2017年;85卷:1046 - 1055页。© 2017威利期刊公司