Suppr超能文献

用于遗传性癌症风险评估的36基因测序检测方法的开发与验证

Development and validation of a 36-gene sequencing assay for hereditary cancer risk assessment.

作者信息

Vysotskaia Valentina S, Hogan Gregory J, Gould Genevieve M, Wang Xin, Robertson Alex D, Haas Kevin R, Theilmann Mark R, Spurka Lindsay, Grauman Peter V, Lai Henry H, Jeon Diana, Haliburton Genevieve, Leggett Matt, Chu Clement S, Iori Kevin, Maguire Jared R, Ready Kaylene, Evans Eric A, Kang Hyunseok P, Haque Imran S

机构信息

Research and Development Department, Counsyl, Inc, South San Francisco, CA, United States.

Current affiliation:  Color Genomics, Inc., Burlingame, CA, United States.

出版信息

PeerJ. 2017 Feb 23;5:e3046. doi: 10.7717/peerj.3046. eCollection 2017.

Abstract

The past two decades have brought many important advances in our understanding of the hereditary susceptibility to cancer. Numerous studies have provided convincing evidence that identification of germline mutations associated with hereditary cancer syndromes can lead to reductions in morbidity and mortality through targeted risk management options. Additionally, advances in gene sequencing technology now permit the development of multigene hereditary cancer testing panels. Here, we describe the 2016 revision of the Counsyl Inherited Cancer Screen for detecting single-nucleotide variants (SNVs), short insertions and deletions (indels), and copy number variants (CNVs) in 36 genes associated with an elevated risk for breast, ovarian, colorectal, gastric, endometrial, pancreatic, thyroid, prostate, melanoma, and neuroendocrine cancers. To determine test accuracy and reproducibility, we performed a rigorous analytical validation across 341 samples, including 118 cell lines and 223 patient samples. The screen achieved 100% test sensitivity across different mutation types, with high specificity and 100% concordance with conventional Sanger sequencing and multiplex ligation-dependent probe amplification (MLPA). We also demonstrated the screen's high intra-run and inter-run reproducibility and robust performance on blood and saliva specimens. Furthermore, we showed that pathogenic Alu element insertions can be accurately detected by our test. Overall, the validation in our clinical laboratory demonstrated the analytical performance required for collecting and reporting genetic information related to risk of developing hereditary cancers.

摘要

在过去二十年里,我们对癌症遗传易感性的认识取得了许多重要进展。大量研究提供了令人信服的证据,表明识别与遗传性癌症综合征相关的种系突变,可通过针对性的风险管理方案降低发病率和死亡率。此外,基因测序技术的进步现在使得多基因遗传性癌症检测面板的开发成为可能。在此,我们描述了Counsyl遗传性癌症筛查2016年版,用于检测与乳腺癌、卵巢癌、结直肠癌、胃癌、子宫内膜癌、胰腺癌、甲状腺癌、前列腺癌、黑色素瘤和神经内分泌癌风险升高相关的36个基因中的单核苷酸变异(SNV)、短插入和缺失(indel)以及拷贝数变异(CNV)。为了确定检测的准确性和可重复性,我们对341个样本进行了严格的分析验证,包括118个细胞系和223个患者样本。该筛查在不同突变类型中实现了100%的检测灵敏度,具有高特异性,并且与传统的桑格测序和多重连接依赖探针扩增(MLPA)的一致性为100%。我们还证明了该筛查在批内和批间具有高重复性,并且在血液和唾液样本上表现稳健。此外,我们表明我们的检测能够准确检测致病性Alu元件插入。总体而言,我们临床实验室的验证证明了收集和报告与遗传性癌症发生风险相关的遗传信息所需的分析性能。

相似文献

1
Development and validation of a 36-gene sequencing assay for hereditary cancer risk assessment.
PeerJ. 2017 Feb 23;5:e3046. doi: 10.7717/peerj.3046. eCollection 2017.
3
Development and validation of next generation sequencing based 35-gene hereditary cancer panel.
Hered Cancer Clin Pract. 2020 Apr 28;18:9. doi: 10.1186/s13053-020-00141-2. eCollection 2020.
6
Development and Validation of a 34-Gene Inherited Cancer Predisposition Panel Using Next-Generation Sequencing.
Biomed Res Int. 2020 Jan 22;2020:3289023. doi: 10.1155/2020/3289023. eCollection 2020.

引用本文的文献

1
Saliva, a molecular reflection of the human body? Implications for diagnosis and treatment.
Cell Stress. 2024 May 27;8:59-68. doi: 10.15698/cst2024.05.297. eCollection 2024.
2
Molecular Approaches Using Body Fluid for the Early Detection of Pancreatic Cancer.
Diagnostics (Basel). 2021 Feb 22;11(2):375. doi: 10.3390/diagnostics11020375.
3
Development and validation of next generation sequencing based 35-gene hereditary cancer panel.
Hered Cancer Clin Pract. 2020 Apr 28;18:9. doi: 10.1186/s13053-020-00141-2. eCollection 2020.
4
A research-based gene panel to investigate breast, ovarian and prostate cancer genetic risk.
PLoS One. 2019 Aug 15;14(8):e0220929. doi: 10.1371/journal.pone.0220929. eCollection 2019.
7
A novel dual-marker expression panel for easy and accurate risk stratification of patients with gastric cancer.
Cancer Med. 2018 Jun;7(6):2463-2471. doi: 10.1002/cam4.1522. Epub 2018 May 7.
9
Inherited Cancer in the Age of Next-Generation Sequencing.
Biol Res Nurs. 2018 Mar;20(2):192-204. doi: 10.1177/1099800417750746. Epub 2018 Jan 11.

本文引用的文献

1
Sanger Confirmation Is Required to Achieve Optimal Sensitivity and Specificity in Next-Generation Sequencing Panel Testing.
J Mol Diagn. 2016 Nov;18(6):923-932. doi: 10.1016/j.jmoldx.2016.07.006. Epub 2016 Oct 6.
4
How Far Do We Go With Genetic Evaluation? Gene, Panel, and Tumor Testing.
Am Soc Clin Oncol Educ Book. 2016;35:e72-8. doi: 10.1200/EDBK_160391.
5
Hereditary melanoma: Update on syndromes and management: Genetics of familial atypical multiple mole melanoma syndrome.
J Am Acad Dermatol. 2016 Mar;74(3):395-407; quiz 408-10. doi: 10.1016/j.jaad.2015.08.038.
6
Systematic Evaluation of Sanger Validation of Next-Generation Sequencing Variants.
Clin Chem. 2016 Apr;62(4):647-54. doi: 10.1373/clinchem.2015.249623. Epub 2016 Feb 4.
8
Update in genetic susceptibility in melanoma.
Ann Transl Med. 2015 Sep;3(15):210. doi: 10.3978/j.issn.2305-5839.2015.08.11.
9
Multigene panel analysis identified germline mutations of DNA repair genes in breast and ovarian cancer.
Mol Genet Genomic Med. 2015 Sep;3(5):459-66. doi: 10.1002/mgg3.157. Epub 2015 May 12.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验