Lawrence Marlon G, Altenburg Michael K, Sanford Ryan, Willett Julian D, Bleasdale Benjamin, Ballou Byron, Wilder Jennifer, Li Feng, Miner Jeffrey H, Berg Ulla B, Smithies Oliver
Department of Pathology and Laboratory Medicine, The University of North Carolina at Chapel Hill, Chapel Hill, NC 27599-7525;
Department of Pathology and Laboratory Medicine, The University of North Carolina at Chapel Hill, Chapel Hill, NC 27599-7525.
Proc Natl Acad Sci U S A. 2017 Mar 14;114(11):2958-2963. doi: 10.1073/pnas.1616457114. Epub 2017 Feb 28.
How the kidney prevents urinary excretion of plasma proteins continues to be debated. Here, using unfixed whole-mount mouse kidneys, we show that fluorescent-tagged proteins and neutral dextrans permeate into the glomerular basement membrane (GBM), in general agreement with Ogston's 1958 equation describing how permeation into gels is related to molecular size. Electron-microscopic analyses of kidneys fixed seconds to hours after injecting gold-tagged albumin, negatively charged gold nanoparticles, and stable oligoclusters of gold nanoparticles show that permeation into the lamina densa of the GBM is size-sensitive. Nanoparticles comparable in size with IgG dimers do not permeate into it. IgG monomer-sized particles permeate to some extent. Albumin-sized particles permeate extensively into the lamina densa. Particles traversing the lamina densa tend to accumulate upstream of the podocyte glycocalyx that spans the slit, but none are observed upstream of the slit diaphragm. At low concentrations, ovalbumin-sized nanoparticles reach the primary filtrate, are captured by proximal tubule cells, and are endocytosed. At higher concentrations, tubular capture is saturated, and they reach the urine. In mouse models of Pierson's or Alport's proteinuric syndromes resulting from defects in GBM structural proteins (laminin β2 or collagen α3 IV), the GBM is irregularly swollen, the lamina densa is absent, and permeation is increased. Our observations indicate that size-dependent permeation into the lamina densa of the GBM and the podocyte glycocalyx, together with saturable tubular capture, determines which macromolecules reach the urine without the need to invoke direct size selection by the slit diaphragm.
肾脏如何防止血浆蛋白经尿液排泄一直存在争议。在此,我们使用未固定的完整小鼠肾脏,发现荧光标记的蛋白质和中性葡聚糖可渗透进入肾小球基底膜(GBM),这与奥格斯顿1958年描述凝胶渗透与分子大小关系的方程总体一致。对注射金标记白蛋白、带负电荷的金纳米颗粒和金纳米颗粒稳定寡聚体后数秒至数小时固定的肾脏进行电子显微镜分析表明,进入GBM致密层的渗透具有大小敏感性。与IgG二聚体大小相当的纳米颗粒无法渗透进入。IgG单体大小的颗粒有一定程度的渗透。白蛋白大小的颗粒可广泛渗透进入致密层。穿过致密层的颗粒往往在横跨裂隙的足细胞糖萼上游积聚,但在裂隙隔膜上游未观察到颗粒。在低浓度下,卵清蛋白大小的纳米颗粒到达原尿,被近端小管细胞捕获并被内吞。在较高浓度下,肾小管捕获饱和,它们进入尿液。在由GBM结构蛋白(层粘连蛋白β2或胶原α3 IV)缺陷导致的皮尔逊或阿尔波特蛋白尿综合征小鼠模型中,GBM不规则肿胀,致密层缺失,渗透率增加。我们的观察结果表明,GBM致密层和足细胞糖萼的大小依赖性渗透,以及可饱和的肾小管捕获,决定了哪些大分子会进入尿液,而无需借助裂隙隔膜进行直接的大小筛选。