Sunobe Tomoki, Sado Tetsuya, Hagiwara Kiyoshi, Manabe Hisaya, Suzuki Toshiyuki, Kobayashi Yasuhisa, Sakurai Makoto, Dewa Shin-Ichi, Matsuoka Midori, Shinomiya Akihiko, Fukuda Kazuya, Miya Masaki
Laboratory of Fish Behavioral Ecology, Tateyama Station, Field Science Center, Tokyo University of Marine Science and Technology, 670 Banda, Tateyama, 294-0308, Japan.
Department of Zoology, Natural History Museum and Institute, 955-2 Aoba-cho, Chuo-ku, Chiba, 260-8682, Japan.
Naturwissenschaften. 2017 Apr;104(3-4):15. doi: 10.1007/s00114-017-1434-z. Epub 2017 Mar 1.
Size-advantage and low-density models have been used to explain how mating systems favor hermaphroditism or gonochorism. However, these models do not indicate historical transitions in sexuality. Here, we investigate the evolution of bidirectional sex change and gonochorism by phylogenetic analysis using the mitochondrial gene of the gobiids Trimma (31 species), Priolepis (eight species), and Trimmatom (two species). Trimma and Priolepis formed a clade within the sister group Trimmatom. Gonadal histology and rearing experiments revealed that Trimma marinae, Trimma nasa, and Trimmatom spp. were gonochoric, whereas all other Trimma and Priolepis spp. were bidirectional sex changers or inferred ones. A maximum-likelihood reconstruction analysis demonstrated that the common ancestor of the three genera was gonochoristic. Bidirectional sex change probably evolved from gonochorism in a common ancestor of Trimma and Priolepis. As the gonads of bidirectional sex changers simultaneously contain mature ovarian and immature testicular components or vice versa, individuals are always potentially capable of functioning as females or males, respectively. Monogamy under low-density conditions may have been the ecological condition for the evolution of bidirectional sex change in a common ancestor. As T. marinae and T. nasa are a monophyletic group, gonochorism should have evolved from bidirectional sex change in a common ancestor.
体型优势和低密度模型已被用于解释交配系统如何有利于雌雄同体或雌雄异体。然而,这些模型并未表明性别的历史转变。在这里,我们通过系统发育分析,利用天竺鲷科的三鳍天竺鲷属(31种)、锯鳞天竺鲷属(8种)和微天竺鲷属(2种)的线粒体基因,研究双向性转变和雌雄异体的进化。三鳍天竺鲷属和锯鳞天竺鲷属在微天竺鲷属的姐妹群中形成一个分支。性腺组织学和饲养实验表明,玛丽三鳍天竺鲷、纳氏三鳍天竺鲷和微天竺鲷属物种是雌雄异体的,而所有其他三鳍天竺鲷属和锯鳞天竺鲷属物种是双向性转变者或推断为双向性转变者。最大似然重建分析表明,这三个属的共同祖先是雌雄异体的。双向性转变可能是在三鳍天竺鲷属和锯鳞天竺鲷属的共同祖先中从雌雄异体进化而来的。由于双向性转变者的性腺同时包含成熟的卵巢和未成熟的睾丸成分,反之亦然,个体总是有可能分别作为雌性或雄性发挥功能。低密度条件下的一夫一妻制可能是共同祖先中双向性转变进化的生态条件。由于玛丽三鳍天竺鲷和纳氏三鳍天竺鲷是一个单系群,雌雄异体应该是从共同祖先的双向性转变进化而来的。