Suppr超能文献

相似文献

1
Modeling human craniofacial disorders in .
Curr Pathobiol Rep. 2017 Mar;5(1):79-92. doi: 10.1007/s40139-017-0128-8. Epub 2017 Jan 24.
2
Sf3b4-depleted Xenopus embryos: A model to study the pathogenesis of craniofacial defects in Nager syndrome.
Dev Biol. 2016 Jul 15;415(2):371-382. doi: 10.1016/j.ydbio.2016.02.010. Epub 2016 Feb 11.
3
The old and new face of craniofacial research: How animal models inform human craniofacial genetic and clinical data.
Dev Biol. 2016 Jul 15;415(2):171-187. doi: 10.1016/j.ydbio.2016.01.017. Epub 2016 Jan 22.
6
In vitro models of cranial neural crest development toward toxicity tests: frog, mouse, and human.
Oral Dis. 2017 Jul;23(5):559-565. doi: 10.1111/odi.12523. Epub 2016 Jul 14.
7
dHAND-Cre transgenic mice reveal specific potential functions of dHAND during craniofacial development.
Dev Biol. 2003 May 15;257(2):263-77. doi: 10.1016/s0012-1606(03)00068-x.

引用本文的文献

1
Xenopus as a model system for studying pigmentation and pigmentary disorders.
Pigment Cell Melanoma Res. 2025 Jan;38(1):e13178. doi: 10.1111/pcmr.13178. Epub 2024 Jun 7.
3
Dyrk1a is required for craniofacial development in Xenopus laevis.
Dev Biol. 2024 Jul;511:63-75. doi: 10.1016/j.ydbio.2024.04.004. Epub 2024 Apr 15.
4
Optical Estimation of Bioelectric Patterns in Living Embryos.
Methods Mol Biol. 2024;2745:91-102. doi: 10.1007/978-1-0716-3577-3_6.
5
Cellular signaling pathways as plastic, proto-cognitive systems: Implications for biomedicine.
Patterns (N Y). 2023 Apr 26;4(5):100737. doi: 10.1016/j.patter.2023.100737. eCollection 2023 May 12.
7
Predictive assays for craniofacial malformations: evaluation in Xenopus laevis embryos exposed to triadimefon.
Arch Toxicol. 2022 Oct;96(10):2815-2824. doi: 10.1007/s00204-022-03327-w. Epub 2022 Jun 24.
8
Molecular genetics of human developmental neurocranial anomalies: towards "precision surgery".
Cereb Cortex. 2023 Mar 10;33(6):2912-2918. doi: 10.1093/cercor/bhac249.
9
Retinoid-X receptor agonists increase thyroid hormone competence in lower jaw remodeling of pre-metamorphic Xenopus laevis tadpoles.
PLoS One. 2022 Apr 13;17(4):e0266946. doi: 10.1371/journal.pone.0266946. eCollection 2022.

本文引用的文献

2
Sf3b4-depleted Xenopus embryos: A model to study the pathogenesis of craniofacial defects in Nager syndrome.
Dev Biol. 2016 Jul 15;415(2):371-382. doi: 10.1016/j.ydbio.2016.02.010. Epub 2016 Feb 11.
4
Using frogs faces to dissect the mechanisms underlying human orofacial defects.
Semin Cell Dev Biol. 2016 Mar;51:54-63. doi: 10.1016/j.semcdb.2016.01.016. Epub 2016 Jan 15.
5
The role of folate metabolism in orofacial development and clefting.
Dev Biol. 2015 Sep 1;405(1):108-22. doi: 10.1016/j.ydbio.2015.07.001. Epub 2015 Jul 2.
7
Establishing neural crest identity: a gene regulatory recipe.
Development. 2015 Jan 15;142(2):242-57. doi: 10.1242/dev.105445.
8
The T-box gene family: emerging roles in development, stem cells and cancer.
Development. 2014 Oct;141(20):3819-33. doi: 10.1242/dev.104471.
9
10
Retinoic acid induced-1 (Rai1) regulates craniofacial and brain development in Xenopus.
Mech Dev. 2014 Aug;133:91-104. doi: 10.1016/j.mod.2014.05.004. Epub 2014 May 27.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验