Department of Chemistry, State University of New York at Binghamton , Binghamton, New York 13902, United States.
Center for Functional Nanomaterials, Brookhaven National Laboratory , Upton, New York 11973, United States.
Nano Lett. 2017 Apr 12;17(4):2204-2210. doi: 10.1021/acs.nanolett.6b04731. Epub 2017 Mar 14.
Chemically controlling crystal structures in nanoscale is challenging, yet provides an effective way to improve catalytic performances. Pt-based nanoframes are a new class of nanomaterials that have great potential as high-performance catalysts. To date, these nanoframes are formed through acid etching in aqueous solutions, which demands long reaction time and often yields ill-defined surface structures. Herein we demonstrate a robust and unprecedented protocol for facile development of high-performance nanoframe catalysts using size and crystallographic facet-controlled PtNi tetrahexahedral nanocrystals prepared through a colloidal synthesis approach as precursors. This new protocol employs the Mond process to preferentially dealloy nickel component in the ⟨100⟩ direction through carbon monoxide etching of carbon-supported PtNi tetrahexahedral nanocrystals at an elevated temperature. The resultant PtNi alloy tetrahexahedral nanoframes possess an open, stable, and high-indexed microstructure, containing a segregated Pt thin layer strained to the Pt-Ni alloy surfaces and featuring a down-shift d-band center as revealed by the density functional theory calculations. These nanoframes exhibit much improved catalytic performance, such as high stability under prolonged electrochemical potential cycles, promoting direct electro-oxidation of formic acid to carbon dioxide and enhancing oxygen reduction reaction activities. Because carbon monoxide can be generated from the carbon support through thermal annealing in air, a common process for pretreating supported catalysts, the developed approach can be easily adopted for preparing industrial scale catalysts that are made of Pt-Ni and other alloy nanoframes.
在纳米尺度上控制晶体结构是具有挑战性的,但这提供了一种有效提高催化性能的方法。基于铂的纳米框架是一类具有巨大潜力的新型纳米材料,可用作高性能催化剂。迄今为止,这些纳米框架是通过在水溶液中进行酸蚀形成的,这需要很长的反应时间,并且往往产生定义不明确的表面结构。在此,我们展示了一种使用尺寸和晶面控制的 PtNi 四面体形纳米晶体作为前体制备高性能纳米框架催化剂的稳健且前所未有的方法,这些纳米晶体是通过胶体合成方法制备的。该新方法采用蒙德(Mond)工艺,通过在高温下用一氧化碳刻蚀负载在碳上的 PtNi 四面体形纳米晶体,优先从 ⟨100 ⟩方向脱合金化镍成分。所得的 PtNi 合金四面体形纳米框架具有开放、稳定和高指数的微观结构,包含分层的 Pt 薄层,该薄层应变到 Pt-Ni 合金表面,并具有向下移动的 d 带中心,这是通过密度泛函理论计算揭示的。这些纳米框架表现出显著改善的催化性能,例如在长时间电化学电势循环下的高稳定性,促进甲酸向二氧化碳的直接电氧化,并增强氧还原反应活性。由于一氧化碳可以通过在空气中进行热退火从碳载体中生成,这是一种预处理负载型催化剂的常见工艺,因此所开发的方法可以很容易地用于制备由 Pt-Ni 和其他合金纳米框架制成的工业规模催化剂。