Suppr超能文献

使用单通道头皮脑电图记录进行情绪分类。

Emotion classification using single-channel scalp-EEG recording.

作者信息

Jalilifard Amir, Brigante Pizzolato Ednaldo, Kafiul Islam Md

出版信息

Annu Int Conf IEEE Eng Med Biol Soc. 2016 Aug;2016:845-849. doi: 10.1109/EMBC.2016.7590833.

Abstract

Several studies have found evidence for corticolimbic Theta electroencephalographic (EEG) oscillation in the neural processing of visual stimuli perceived as fear or threatening scene. Recent studies showed that neural oscillations' patterns in Theta, Alpha, Beta and Gamma sub-bands play a main role in brain's emotional processing. The main goal of this study is to classify two different emotional states by means of EEG data recorded through a single-electrode EEG headset. Nineteen young subjects participated in an EEG experiment while watching a video clip that evoked three emotional states: neutral, relaxation and scary. Following each video clip, participants were asked to report on their subjective affect by giving a score between 0 to 10. First, recorded EEG data were preprocessed by stationary wavelet transform (SWT) based denoising to remove artifacts. Afterward, the distribution of power in time-frequency space was obtained using short-time Fourier transform (STFT) and then, the mean value of energy was calculated for each EEG sub-band. Finally, 46 features, as the mean energy of frequency bands between 4 and 50 Hz, containing 689 instances - for each subject -were collected in order to classify the emotional states. Our experimental results show that EEG dynamics induced by horror and relaxing movies can be classified with average classification rate of 92% using support vector machine (SVM) classifier. We also compared the performance of SVM to K-nearest neighbors (K-NN). The results show that K-NN achieves a better classification rate by 94% accuracy. The findings of this work are expected to pave the way to a new horizon in neuroscience by proving the point that only single-channel EEG data carry enough information for emotion classification.

摘要

多项研究发现,在对被视为恐惧或威胁场景的视觉刺激进行神经处理时,存在皮质边缘θ脑电图(EEG)振荡的证据。最近的研究表明,θ、α、β和γ子带中的神经振荡模式在大脑的情绪处理中起主要作用。本研究的主要目标是通过单电极EEG头戴式设备记录的EEG数据对两种不同的情绪状态进行分类。19名年轻受试者参与了一项EEG实验,他们观看了一段引发三种情绪状态的视频片段:中性、放松和恐惧。在每个视频片段之后,要求参与者通过给出0到10之间的分数来报告他们的主观感受。首先,对记录的EEG数据进行基于平稳小波变换(SWT)的去噪预处理,以去除伪迹。然后,使用短时傅里叶变换(STFT)获得时频空间中的功率分布,接着计算每个EEG子带的能量平均值。最后,收集46个特征,即4至50Hz频段的平均能量,每个受试者包含689个实例,以便对情绪状态进行分类。我们的实验结果表明,使用支持向量机(SVM)分类器,恐怖电影和放松电影诱发的EEG动态可以以92%的平均分类率进行分类。我们还将SVM的性能与K近邻(K-NN)进行了比较。结果表明,K-NN的准确率达到94%,分类率更高。这项工作的发现有望为神经科学开辟新的视野,证明单通道EEG数据携带足够的信息用于情绪分类这一观点。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验