Suppr超能文献

基于形状先验和运动线索的4D肺部肿瘤分割

4D lung tumor segmentation via shape prior and motion cues.

作者信息

Farhangi Mohammad M, Dunlap Neal, Amini Amir

出版信息

Annu Int Conf IEEE Eng Med Biol Soc. 2016 Aug;2016:1284-1287. doi: 10.1109/EMBC.2016.7590941.

Abstract

Lung tumor segmentation is important for therapy in the radiation treatment of patients with thoracic malignancies. In this paper, we describe a 4D image segmentation method based on graph-cuts optimization, shape prior and optical flow. Due to small size, the location, and low contrast between the tumor and the surrounding tissue, tumor segmentation in 3D+t is challenging. We performed 4D lung tumor segmentation in 5 patients, and in each case compared the results with the expert-delineated lung nodules. In each case, 4D image segmentation took approximately ten minutes on a PC with AMD Phenom II and 32GB of memory for segmenting tumor in five phases of lung CT data.

摘要

肺部肿瘤分割对于胸部恶性肿瘤患者的放射治疗具有重要意义。在本文中,我们描述了一种基于图割优化、形状先验和光流的4D图像分割方法。由于肿瘤尺寸小、位置特殊以及与周围组织之间的对比度低,3D+t中的肿瘤分割具有挑战性。我们对5名患者进行了4D肺部肿瘤分割,并将每个病例的结果与专家划定的肺结节进行了比较。在每种情况下,使用配备AMD Phenom II和32GB内存的个人计算机对肺部CT数据的五个阶段进行肿瘤分割时,4D图像分割大约需要十分钟。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验