Suppr超能文献

三轴加速度计的在线递归自动校准

An online recursive autocalibration of triaxial accelerometer.

作者信息

Su Steven W, Nguyen Hung T

出版信息

Annu Int Conf IEEE Eng Med Biol Soc. 2016 Aug;2016:2038-2041. doi: 10.1109/EMBC.2016.7591127.

Abstract

In this paper, we proposed a novel method for autocalibration of triaxial Micro-Electro-Mechanical systems (MEMS) accelerometer that does not require any sophisticated laboratory facilities. In particular, this method is an online calibration method which can be conveniently implemented with the accuracy of MEMS accelerometer being significantly improved. The procedure exploits the fact that the output vector of the accelerometer must match the local gravity in static state condition. To achieve online calibration, the model as well as the cost function are linearized at the beginning, and an online recursive method is then utilized to identify the unknown parameters and remove the bias caused by linearization. This online recursive method is based on damped recursive least square estimation (DRLS), which can significantly reduce the calculation complexity comparing to nonlinear optimization method. In addition, the unknown parameters can be solved in a short time and the estimated parameters can remain stable during calibration. Experimentally, this method was tested by comparing the output results before and after calibration in different condition. It showed that the output, after calibrated by the proposed method, is more accurate with respect to raw output using default factory parameters.

摘要

在本文中,我们提出了一种用于三轴微机电系统(MEMS)加速度计自动校准的新方法,该方法不需要任何复杂的实验室设备。特别地,这种方法是一种在线校准方法,能够方便地实现,同时显著提高MEMS加速度计的精度。该过程利用了加速度计在静态条件下的输出向量必须与当地重力相匹配这一事实。为了实现在线校准,首先对模型和代价函数进行线性化,然后利用在线递归方法来识别未知参数并消除线性化引起的偏差。这种在线递归方法基于阻尼递归最小二乘估计(DRLS),与非线性优化方法相比,它可以显著降低计算复杂度。此外,未知参数能够在短时间内求解,并且估计参数在校准过程中能够保持稳定。通过实验,在不同条件下比较校准前后的输出结果对该方法进行了测试。结果表明,与使用默认出厂参数的原始输出相比,采用所提出的方法校准后的输出更准确。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验