Suppr超能文献

在低信噪比情况下,使用单个麦克风改善宽带功能磁共振成像噪声的语音质量和清晰度。

Improving quality and intelligibility of speech using single microphone for the broadband fMRI noise at low SNR.

作者信息

Vahanesa Chetan, Reddy Chandan K A, Panahi Issa M S

出版信息

Annu Int Conf IEEE Eng Med Biol Soc. 2016 Aug;2016:3674-3678. doi: 10.1109/EMBC.2016.7591525.

Abstract

Functional Magnetic Resonance Imaging (fMRI) is used in many diagnostic procedures for neurological related disorders. Strong broadband acoustic noise generated during fMRI scan interferes with the speech communication between the physician and the patient. In this paper, we propose a single microphone Speech Enhancement (SE) technique which is based on the supervised machine learning technique and a statistical model based SE technique. The proposed algorithm is robust and computationally efficient and has capability to run in real-time. Objective and Subjective evaluations show that the proposed SE method outperforms the existing state-of-the-art algorithms in terms of quality and intelligibility of the recovered speech at low Signal to Noise Ratios (SNRs).

摘要

功能磁共振成像(fMRI)被用于许多与神经相关疾病的诊断程序中。fMRI扫描期间产生的强烈宽带噪声会干扰医生与患者之间的语音交流。在本文中,我们提出了一种基于监督机器学习技术的单麦克风语音增强(SE)技术以及一种基于统计模型的SE技术。所提出的算法具有鲁棒性且计算效率高,能够实时运行。客观和主观评估表明,在低信噪比(SNR)下,所提出的SE方法在恢复语音的质量和可懂度方面优于现有的最先进算法。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验