Suppr超能文献

手持式手术机器人器械生理震颤的三维建模

Three-dimensional modeling of physiological tremor for hand-held surgical robotic instruments.

作者信息

Tatinati Sivanagaraja, Pual Anand, Veluvolu Kalyana C

出版信息

Annu Int Conf IEEE Eng Med Biol Soc. 2016 Aug;2016:3708-3711. doi: 10.1109/EMBC.2016.7591533.

Abstract

Hand-held robotic instruments are developed to compensate physiological tremor in real-time while augmenting the required precision and dexterity into normal microsurgical work-flow. The hardware (sensors and actuators) and software (causal linear filters) employed for tremor identification and filtering introduces time-varying unknown phase-delay that adversely affects the device performance. The current techniques that focus on three-dimensions (3D) tip position control involves modeling and canceling the tremor in 3-axes (x, y, and z axes) separately. Our analysis with the tremor data recorded from surgeons and novice subjects show that there exists significant correlation in tremor motion across the dimensions. Motivated by this, a new multi-dimensional modeling approach based on extreme learning machines (ELM) is proposed in this paper to correct the phase delay and to accurately model tremulous motion in three dimensions simultaneously. A study is conducted with tremor data recorded from the microsurgeons to analyze the suitability of proposed approach.

摘要

手持式机器人器械的开发旨在实时补偿生理震颤,同时将所需的精度和灵活性融入正常的显微外科工作流程。用于震颤识别和滤波的硬件(传感器和执行器)及软件(因果线性滤波器)会引入时变未知相位延迟,这会对设备性能产生不利影响。当前专注于三维(3D)尖端位置控制的技术涉及分别对三个轴(x、y和z轴)的震颤进行建模和消除。我们对从外科医生和新手受试者记录的震颤数据进行的分析表明,震颤运动在各维度之间存在显著相关性。受此启发,本文提出了一种基于极限学习机(ELM)的新的多维建模方法,以校正相位延迟并同时精确地对三维震颤运动进行建模。利用从显微外科医生记录的震颤数据进行了一项研究,以分析所提方法的适用性。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验