Computational Biology & Genomics, Biogen, Cambridge, MA 02142.
Stem Cell Research, Biogen, Cambridge, MA 02142.
Proc Natl Acad Sci U S A. 2017 Mar 21;114(12):E2347-E2356. doi: 10.1073/pnas.1613181114. Epub 2017 Mar 7.
Spinal muscular atrophy (SMA), an autosomal recessive neuromuscular disease, is the leading monogenic cause of infant mortality. Homozygous loss of the gene survival of motor neuron 1 () causes the selective degeneration of lower motor neurons and subsequent atrophy of proximal skeletal muscles. The protein product, survival of motor neuron (SMN), is ubiquitously expressed and is a key factor in the assembly of the core splicing machinery. The molecular mechanisms by which disruption of the broad functions of SMN leads to neurodegeneration remain unclear. We used an antisense oligonucleotide (ASO)-based inducible mouse model of SMA to investigate the SMN-specific transcriptome changes associated with neurodegeneration. We found evidence of widespread intron retention, particularly of minor U12 introns, in the spinal cord of mice 30 d after SMA induction, which was then rescued by a therapeutic ASO. Intron retention was concomitant with a strong induction of the p53 pathway and DNA damage response, manifesting as γ-H2A.X positivity in neurons of the spinal cord and brain. Widespread intron retention and markers of the DNA damage response were also observed with SMN depletion in human SH-SY5Y neuroblastoma cells and human induced pluripotent stem cell-derived motor neurons. We also found that retained introns, high in GC content, served as substrates for the formation of transcriptional R-loops. We propose that defects in intron removal in SMA promote DNA damage in part through the formation of RNA:DNA hybrid structures, leading to motor neuron death.
脊髓性肌萎缩症(SMA)是一种常染色体隐性神经肌肉疾病,是婴儿死亡的主要单基因原因。运动神经元生存基因 1()的纯合缺失导致下运动神经元的选择性退化和随后的近端骨骼肌萎缩。该蛋白产物,运动神经元生存蛋白(SMN),广泛表达,是核心剪接机制组装的关键因素。破坏 SMN 的广泛功能导致神经退行性变的分子机制仍不清楚。我们使用基于反义寡核苷酸(ASO)的 SMA 诱导型小鼠模型来研究与神经退行性变相关的 SMN 特异性转录组变化。我们发现,在 SMA 诱导后 30 天,小鼠脊髓中存在广泛的内含子保留,特别是较小的 U12 内含子,随后被治疗性 ASO 挽救。内含子保留伴随着 p53 途径和 DNA 损伤反应的强烈诱导,表现为脊髓和大脑神经元中的 γ-H2A.X 阳性。在人类 SH-SY5Y 神经母细胞瘤细胞和人类诱导多能干细胞衍生的运动神经元中,随着 SMN 耗竭,也观察到广泛的内含子保留和 DNA 损伤反应的标志物。我们还发现,富含 GC 的保留内含子可作为转录 R-环形成的底物。我们提出,SMA 中内含子去除的缺陷部分通过形成 RNA:DNA 杂交结构导致 DNA 损伤,从而导致运动神经元死亡。