Suppr超能文献

脊髓性肌萎缩症严重模型中 SMN 缺乏导致广泛的内含子滞留和 DNA 损伤。

SMN deficiency in severe models of spinal muscular atrophy causes widespread intron retention and DNA damage.

机构信息

Computational Biology & Genomics, Biogen, Cambridge, MA 02142.

Stem Cell Research, Biogen, Cambridge, MA 02142.

出版信息

Proc Natl Acad Sci U S A. 2017 Mar 21;114(12):E2347-E2356. doi: 10.1073/pnas.1613181114. Epub 2017 Mar 7.

Abstract

Spinal muscular atrophy (SMA), an autosomal recessive neuromuscular disease, is the leading monogenic cause of infant mortality. Homozygous loss of the gene survival of motor neuron 1 () causes the selective degeneration of lower motor neurons and subsequent atrophy of proximal skeletal muscles. The protein product, survival of motor neuron (SMN), is ubiquitously expressed and is a key factor in the assembly of the core splicing machinery. The molecular mechanisms by which disruption of the broad functions of SMN leads to neurodegeneration remain unclear. We used an antisense oligonucleotide (ASO)-based inducible mouse model of SMA to investigate the SMN-specific transcriptome changes associated with neurodegeneration. We found evidence of widespread intron retention, particularly of minor U12 introns, in the spinal cord of mice 30 d after SMA induction, which was then rescued by a therapeutic ASO. Intron retention was concomitant with a strong induction of the p53 pathway and DNA damage response, manifesting as γ-H2A.X positivity in neurons of the spinal cord and brain. Widespread intron retention and markers of the DNA damage response were also observed with SMN depletion in human SH-SY5Y neuroblastoma cells and human induced pluripotent stem cell-derived motor neurons. We also found that retained introns, high in GC content, served as substrates for the formation of transcriptional R-loops. We propose that defects in intron removal in SMA promote DNA damage in part through the formation of RNA:DNA hybrid structures, leading to motor neuron death.

摘要

脊髓性肌萎缩症(SMA)是一种常染色体隐性神经肌肉疾病,是婴儿死亡的主要单基因原因。运动神经元生存基因 1()的纯合缺失导致下运动神经元的选择性退化和随后的近端骨骼肌萎缩。该蛋白产物,运动神经元生存蛋白(SMN),广泛表达,是核心剪接机制组装的关键因素。破坏 SMN 的广泛功能导致神经退行性变的分子机制仍不清楚。我们使用基于反义寡核苷酸(ASO)的 SMA 诱导型小鼠模型来研究与神经退行性变相关的 SMN 特异性转录组变化。我们发现,在 SMA 诱导后 30 天,小鼠脊髓中存在广泛的内含子保留,特别是较小的 U12 内含子,随后被治疗性 ASO 挽救。内含子保留伴随着 p53 途径和 DNA 损伤反应的强烈诱导,表现为脊髓和大脑神经元中的 γ-H2A.X 阳性。在人类 SH-SY5Y 神经母细胞瘤细胞和人类诱导多能干细胞衍生的运动神经元中,随着 SMN 耗竭,也观察到广泛的内含子保留和 DNA 损伤反应的标志物。我们还发现,富含 GC 的保留内含子可作为转录 R-环形成的底物。我们提出,SMA 中内含子去除的缺陷部分通过形成 RNA:DNA 杂交结构导致 DNA 损伤,从而导致运动神经元死亡。

相似文献

1
SMN deficiency in severe models of spinal muscular atrophy causes widespread intron retention and DNA damage.
Proc Natl Acad Sci U S A. 2017 Mar 21;114(12):E2347-E2356. doi: 10.1073/pnas.1613181114. Epub 2017 Mar 7.
2
RNA-sequencing of a mouse-model of spinal muscular atrophy reveals tissue-wide changes in splicing of U12-dependent introns.
Nucleic Acids Res. 2017 Jan 9;45(1):395-416. doi: 10.1093/nar/gkw731. Epub 2016 Aug 23.
3
Normalization of Patient-Identified Plasma Biomarkers in SMNΔ7 Mice following Postnatal SMN Restoration.
PLoS One. 2016 Dec 1;11(12):e0167077. doi: 10.1371/journal.pone.0167077. eCollection 2016.
6
The Antisense Transcript SMN-AS1 Regulates SMN Expression and Is a Novel Therapeutic Target for Spinal Muscular Atrophy.
Neuron. 2017 Jan 4;93(1):66-79. doi: 10.1016/j.neuron.2016.11.033. Epub 2016 Dec 22.
8
Altered mRNA Splicing in SMN-Depleted Motor Neuron-Like Cells.
PLoS One. 2016 Oct 13;11(10):e0163954. doi: 10.1371/journal.pone.0163954. eCollection 2016.
9
SMN expression is required in motor neurons to rescue electrophysiological deficits in the SMNΔ7 mouse model of SMA.
Hum Mol Genet. 2015 Oct 1;24(19):5524-41. doi: 10.1093/hmg/ddv283. Epub 2015 Jul 23.
10
Optimization of SMN trans-splicing through the analysis of SMN introns.
J Mol Neurosci. 2012 Mar;46(3):459-69. doi: 10.1007/s12031-011-9614-3. Epub 2011 Aug 9.

引用本文的文献

1
Intron Retention: A Reemerging Paradigm in RNA Biology and Post-Transcriptional Gene Regulation.
Genes (Basel). 2025 Aug 21;16(8):986. doi: 10.3390/genes16080986.
2
Application of Biomarkers in Spinal Muscular Atrophy.
Int J Mol Sci. 2025 Jul 17;26(14):6887. doi: 10.3390/ijms26146887.
3
Epigenetic regulation in spinal muscular atrophy: emerging areas and future directions.
Orphanet J Rare Dis. 2025 Jul 10;20(1):353. doi: 10.1186/s13023-025-03857-3.
4
Intra-amniotic antisense oligonucleotide treatment improves phenotypes in preclinical models of spinal muscular atrophy.
Sci Transl Med. 2025 May 14;17(798):eadv4656. doi: 10.1126/scitranslmed.adv4656.
6
In Search of Spinal Muscular Atrophy Disease Modifiers.
Int J Mol Sci. 2024 Oct 18;25(20):11210. doi: 10.3390/ijms252011210.
8
Neurophysiological Characteristics in Type II and Type III 5q Spinal Muscular Atrophy Patients: Impact of Nusinersen Treatment.
Drug Des Devel Ther. 2024 Mar 28;18:953-965. doi: 10.2147/DDDT.S449066. eCollection 2024.
9
Bridging the gap: R-loop mediated genomic instability and its implications in neurological diseases.
Epigenomics. 2024 Mar 26;16(8):589-608. doi: 10.2217/epi-2023-0379.
10
RLSuite: An Integrative R-Loop Bioinformatics Framework.
J Bioinform Syst Biol. 2023;6(4):364-378. doi: 10.26502/jbsb.5107071. Epub 2023 Dec 21.

本文引用的文献

1
Two familial ALS proteins function in prevention/repair of transcription-associated DNA damage.
Proc Natl Acad Sci U S A. 2016 Nov 29;113(48):E7701-E7709. doi: 10.1073/pnas.1611673113. Epub 2016 Nov 14.
3
SMN and symmetric arginine dimethylation of RNA polymerase II C-terminal domain control termination.
Nature. 2016 Jan 7;529(7584):48-53. doi: 10.1038/nature16469. Epub 2015 Dec 23.
6
R-loops highlight the nucleus in ALS.
Nucleus. 2015;6(1):23-9. doi: 10.1080/19491034.2015.1004952.
7
rMATS: robust and flexible detection of differential alternative splicing from replicate RNA-Seq data.
Proc Natl Acad Sci U S A. 2014 Dec 23;111(51):E5593-601. doi: 10.1073/pnas.1419161111. Epub 2014 Dec 5.
9
Widespread intron retention in mammals functionally tunes transcriptomes.
Genome Res. 2014 Nov;24(11):1774-86. doi: 10.1101/gr.177790.114. Epub 2014 Sep 25.
10
DNA damage and its links to neurodegeneration.
Neuron. 2014 Jul 16;83(2):266-282. doi: 10.1016/j.neuron.2014.06.034.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验