Lee Wonju, Son Taehwang, Lee Changhun, Oh Yongjin, Kim Donghyun
School of Electrical and Electronic Engineering, Yonsei University, 50 Yonsei-ro, Seodaemun-gu, Seoul, 03722, Republic of Korea.
Methods Mol Biol. 2017;1571:15-29. doi: 10.1007/978-1-4939-6848-0_2.
Ultra-sensitive detection based on surface plasmon resonance (SPR) was investigated using 3D nanogap arrays for colocalization of target molecular distribution and localized plasmon wave in the near-field. Colocalization was performed by oblique deposition of a dielectric mask layer to create nanogap at the side of circular and triangular nanoaperture, where fields localized by surface plasmon localization coincide with the spatial distribution of target molecular interactions. The feasibility of ultra-sensitivity was experimentally verified by measuring DNA hybridization. Triangular nanopattern provided an optimum to achieve highly amplified angular shifts and led to enhanced detection sensitivity on the order of 1 fg/mm in terms of molecular binding capacity. We confirmed improvement of SPR sensitivity by three orders of magnitude, compared with conventional SPR sensors, using 3D plasmonic nanogap arrays.
基于表面等离子体共振(SPR)的超灵敏检测方法通过使用三维纳米间隙阵列进行了研究,该阵列用于目标分子分布与近场中局域等离子体波的共定位。共定位是通过倾斜沉积介电掩膜层来实现的,从而在圆形和三角形纳米孔径的侧面形成纳米间隙,在该位置,由表面等离子体局域化产生的场与目标分子相互作用的空间分布相重合。通过测量DNA杂交实验验证了超灵敏检测的可行性。三角形纳米图案为实现高度放大的角度偏移提供了最佳条件,并在分子结合能力方面使检测灵敏度提高到约1 fg/mm的量级。我们证实,与传统SPR传感器相比,使用三维等离子体纳米间隙阵列可将SPR灵敏度提高三个数量级。