Briz Carlos G, Navarrete Marta, Esteban José A, Nieto Marta
Department for Molecular and Cellular Biology, Centro Nacional de Biotecnología (CNB-CSIC).
Molecular Neurobiology Department, Centro de Biología Molecular "Severo Ochoa", Consejo Superior de Investigaciones Científicas (CSIC-UAM).
J Vis Exp. 2017 Feb 15(120):55139. doi: 10.3791/55139.
The nervous system is composed of an enormous range of distinct neuronal types. These neuronal subpopulations are characterized by, among other features, their distinct dendritic morphologies, their specific patterns of axonal connectivity, and their selective firing responses. The molecular and cellular mechanisms responsible for these aspects of differentiation during development are still poorly understood. Here, we describe combined protocols for labeling and characterizing the structural connectivity and excitability of cortical neurons. Modification of the in utero electroporation (IUE) protocol allows the labeling of a sparse population of neurons. This, in turn, enables the identification and tracking of the dendrites and axons of individual neurons, the precise characterization of the laminar location of axonal projections, and morphometric analysis. IUE can also be used to investigate changes in the excitability of wild-type (WT) or genetically modified neurons by combining it with whole-cell recording from acute slices of electroporated brains. These two techniques contribute to a better understanding of the coupling of structural and functional connectivity and of the molecular mechanisms controlling neuronal diversity during development. These developmental processes have important implications on axonal wiring, the functional diversity of neurons, and the biology of cognitive disorders.
神经系统由种类繁多的不同神经元类型组成。这些神经元亚群的特征包括其独特的树突形态、特定的轴突连接模式以及选择性放电反应等。发育过程中负责这些分化方面的分子和细胞机制仍知之甚少。在此,我们描述了用于标记和表征皮质神经元结构连接性和兴奋性的联合方案。对子宫内电穿孔(IUE)方案的改进可实现对稀疏神经元群体的标记。这进而能够识别和追踪单个神经元的树突和轴突,精确表征轴突投射的层状位置,并进行形态计量分析。通过将IUE与来自电穿孔脑急性切片的全细胞记录相结合,IUE还可用于研究野生型(WT)或转基因神经元兴奋性的变化。这两种技术有助于更好地理解结构和功能连接性的耦合以及发育过程中控制神经元多样性的分子机制。这些发育过程对轴突布线、神经元的功能多样性以及认知障碍生物学具有重要意义。