Laurin Yoann, Eyer Joel, Robert Charles H, Prevost Chantal, Sacquin-Mora Sophie
Laboratoire de Biochimie Théorique, UPR 9080 CNRS, Institut de Biologie Physico-Chimique , 13 rue Pierre et Marie Curie, 75005 Paris, France.
Laboratoire de Neurobiologie & Transgenèse, UPRES EA 3143, INSERM, Centre Hospitalier Universitaire , Angers, France.
Biochemistry. 2017 Mar 28;56(12):1746-1756. doi: 10.1021/acs.biochem.6b00988. Epub 2017 Mar 17.
Although they play a significant part in the regulation of microtubule structure, dynamics, and function, the disordered C-terminal tails of tubulin remain invisible to experimental structural methods and do not appear in the crystallographic structures that are currently available in the Protein Data Bank. Interestingly, these tails concentrate most of the sequence variability between tubulin isotypes and are the sites of the principal post-translational modifications undergone by this protein. Using homology modeling, we developed two complete models for the human αI/βI- and αI/βIII-tubulin isotypes that include their C-terminal tails. We then investigated the conformational variability of the two β-tails using long time-scale classical molecular dynamics simulations that revealed similar features, notably the unexpected presence of common anchoring regions on the surface of the tuulin dimer, but also distinctive mobility or interaction patterns, some of which could be related to the tail lengths and charge distributions. We also observed in our simulations that the C-terminal tail from the βI isotype, but not the βIII isotype, formed contacts in the putative binding site of a recently discovered peptide that disrupts microtubule formation in glioma cells. Hindering the binding site in the βI isotype would be consistent with this peptide's preferential disruption of microtubule formation in glioma, whose cells overexpress βIII, compared to normal glial cells. While these observations need to be confirmed with more intensive sampling, our study opens new perspectives for the development of isotype-specific chemotherapy drugs.
尽管微管蛋白的无序C末端尾巴在微管结构、动力学和功能的调节中发挥着重要作用,但实验结构方法却无法观察到它们,而且在蛋白质数据库目前可用的晶体结构中也未出现。有趣的是,这些尾巴集中了微管蛋白同种型之间大部分的序列变异性,并且是该蛋白主要翻译后修饰的位点。利用同源建模,我们开发了两个人αI/βI-和αI/βIII-微管蛋白同种型的完整模型,其中包括它们的C末端尾巴。然后,我们使用长时间尺度的经典分子动力学模拟研究了两个β尾巴的构象变异性,结果揭示了相似的特征,特别是在微管蛋白二聚体表面意外出现的共同锚定区域,但也有独特的流动性或相互作用模式,其中一些可能与尾巴长度和电荷分布有关。我们在模拟中还观察到,βI同种型的C末端尾巴,而不是βIII同种型的,在最近发现的一种肽的假定结合位点形成了接触,该肽会破坏胶质瘤细胞中的微管形成。与正常神经胶质细胞相比,阻碍βI同种型中的结合位点将与这种肽在胶质瘤中优先破坏微管形成相一致,因为胶质瘤细胞中βIII过表达。虽然这些观察结果需要通过更密集的采样来证实,但我们的研究为开发同种型特异性化疗药物开辟了新的前景。