Suppr超能文献

肿瘤微环境对T细胞活性构成的障碍:协同治疗的实例

Obstacles Posed by the Tumor Microenvironment to T cell Activity: A Case for Synergistic Therapies.

作者信息

Anderson Kristin G, Stromnes Ingunn M, Greenberg Philip D

机构信息

Clinical Research Division, Fred Hutchinson Cancer Research Center, Mail Stop D3-100, P.O. Box 19024, Seattle, WA 98109, USA; Program in Immunology, Fred Hutchinson Cancer Research Center, Seattle, WA 98109, USA; Departments of Medicine/Oncology and Immunology, University of Washington School of Medicine, Seattle, WA 98109, USA.

Clinical Research Division, Fred Hutchinson Cancer Research Center, Mail Stop D3-100, P.O. Box 19024, Seattle, WA 98109, USA; Program in Immunology, Fred Hutchinson Cancer Research Center, Seattle, WA 98109, USA.

出版信息

Cancer Cell. 2017 Mar 13;31(3):311-325. doi: 10.1016/j.ccell.2017.02.008.

Abstract

T cell dysfunction in solid tumors results from multiple mechanisms. Altered signaling pathways in tumor cells help produce a suppressive tumor microenvironment enriched for inhibitory cells, posing a major obstacle for cancer immunity. Metabolic constraints to cell function and survival shape tumor progression and immune cell function. In the face of persistent antigen, chronic T cell receptor signaling drives T lymphocytes to a functionally exhausted state. Here we discuss how the tumor and its microenvironment influences T cell trafficking and function with a focus on melanoma, and pancreatic and ovarian cancer, and discuss how scientific advances may help overcome these hurdles.

摘要

实体瘤中的T细胞功能障碍由多种机制导致。肿瘤细胞中信号通路的改变有助于产生富含抑制性细胞的抑制性肿瘤微环境,这对癌症免疫构成了重大障碍。细胞功能和存活的代谢限制塑造了肿瘤进展和免疫细胞功能。面对持续存在的抗原,慢性T细胞受体信号传导会使T淋巴细胞进入功能耗竭状态。在此,我们将重点讨论黑色素瘤、胰腺癌和卵巢癌中肿瘤及其微环境如何影响T细胞运输和功能,并探讨科学进展如何有助于克服这些障碍。

相似文献

1
Obstacles Posed by the Tumor Microenvironment to T cell Activity: A Case for Synergistic Therapies.
Cancer Cell. 2017 Mar 13;31(3):311-325. doi: 10.1016/j.ccell.2017.02.008.
2
Perspectives on Chimeric Antigen Receptor T-Cell Immunotherapy for Solid Tumors.
Front Immunol. 2018 May 22;9:1104. doi: 10.3389/fimmu.2018.01104. eCollection 2018.
3
Advances in CAR-T Cell Genetic Engineering Strategies to Overcome Hurdles in Solid Tumors Treatment.
Front Immunol. 2022 Feb 8;13:830292. doi: 10.3389/fimmu.2022.830292. eCollection 2022.
4
CAR T Cells for Solid Tumors: New Strategies for Finding, Infiltrating, and Surviving in the Tumor Microenvironment.
Front Immunol. 2019 Feb 5;10:128. doi: 10.3389/fimmu.2019.00128. eCollection 2019.
6
Targeting SLC1A5 and SLC3A2/SLC7A5 as a Potential Strategy to Strengthen Anti-Tumor Immunity in the Tumor Microenvironment.
Front Immunol. 2021 Apr 19;12:624324. doi: 10.3389/fimmu.2021.624324. eCollection 2021.
7
Obstacles and Coping Strategies of CAR-T Cell Immunotherapy in Solid Tumors.
Front Immunol. 2021 May 19;12:687822. doi: 10.3389/fimmu.2021.687822. eCollection 2021.
8
Chimeric Antigen Receptors for the Tumour Microenvironment.
Adv Exp Med Biol. 2020;1263:117-143. doi: 10.1007/978-3-030-44518-8_8.
9
CAR T Cell Therapy for Solid Tumors.
Annu Rev Med. 2017 Jan 14;68:139-152. doi: 10.1146/annurev-med-062315-120245. Epub 2016 Nov 17.
10
Paving New Roads for CARs.
Trends Cancer. 2019 Oct;5(10):583-592. doi: 10.1016/j.trecan.2019.09.005. Epub 2019 Oct 19.

引用本文的文献

2
Deciphering antigen-specific T cell navigation tactics and cancer immune evasion in co-cultures.
Commun Biol. 2025 Jul 31;8(1):1140. doi: 10.1038/s42003-025-08568-w.
3
Systemic Delivery Strategies for Oncolytic Viruses: Advancing Targeted and Efficient Tumor Therapy.
Int J Mol Sci. 2025 Jul 18;26(14):6900. doi: 10.3390/ijms26146900.
4
Immunotherapy in GI Cancers: Lessons from Key Trials and Future Clinical Applications.
Antibodies (Basel). 2025 Jul 11;14(3):58. doi: 10.3390/antib14030058.
5
Multimodal delineation of a layer of effector function among exhausted CD8 T cells in tumors.
Sci Immunol. 2025 Jul 11;10(109):eadt3537. doi: 10.1126/sciimmunol.adt3537.
7
Enhanced antitumor immunity of VNP20009-CCL2-CXCL9 via the cGAS/STING axis in osteosarcoma lung metastasis.
J Immunother Cancer. 2025 Jul 1;13(7):e012269. doi: 10.1136/jitc-2025-012269.
8
Mutant KRAS peptide targeted CAR-T cells engineered for cancer therapy.
Cancer Cell. 2025 Jul 14;43(7):1365-1376.e5. doi: 10.1016/j.ccell.2025.05.006. Epub 2025 Jun 5.
9
Cucurbitacin B induces oral squamous cell carcinomapyroptosis via GSDME and inhibits tumour growth.
Transl Oncol. 2025 Aug;58:102422. doi: 10.1016/j.tranon.2025.102422. Epub 2025 May 27.
10
Viral oncogenesis in cancer: from mechanisms to therapeutics.
Signal Transduct Target Ther. 2025 May 12;10(1):151. doi: 10.1038/s41392-025-02197-9.

本文引用的文献

2
Innate immune signaling and regulation in cancer immunotherapy.
Cell Res. 2017 Jan;27(1):96-108. doi: 10.1038/cr.2016.149. Epub 2016 Dec 16.
3
Lent-On-Plus Lentiviral vectors for conditional expression in human stem cells.
Sci Rep. 2016 Nov 17;6:37289. doi: 10.1038/srep37289.
5
The epigenetic landscape of T cell exhaustion.
Science. 2016 Dec 2;354(6316):1165-1169. doi: 10.1126/science.aae0491. Epub 2016 Oct 27.
6
Epigenetic stability of exhausted T cells limits durability of reinvigoration by PD-1 blockade.
Science. 2016 Dec 2;354(6316):1160-1165. doi: 10.1126/science.aaf2807. Epub 2016 Oct 27.
7
L-Arginine Modulates T Cell Metabolism and Enhances Survival and Anti-tumor Activity.
Cell. 2016 Oct 20;167(3):829-842.e13. doi: 10.1016/j.cell.2016.09.031. Epub 2016 Oct 13.
9
Engineering T Cells with Customized Therapeutic Response Programs Using Synthetic Notch Receptors.
Cell. 2016 Oct 6;167(2):419-432.e16. doi: 10.1016/j.cell.2016.09.011. Epub 2016 Sep 29.
10
LDHA-Associated Lactic Acid Production Blunts Tumor Immunosurveillance by T and NK Cells.
Cell Metab. 2016 Nov 8;24(5):657-671. doi: 10.1016/j.cmet.2016.08.011. Epub 2016 Sep 15.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验