Suppr超能文献

使用虚拟单色成像在低能量水平下改善心肌灌注缺损的鉴别

Improved Discrimination of Myocardial Perfusion Defects at Low Energy Levels Using Virtual Monochromatic Imaging.

作者信息

Carrascosa Patricia, Deviggiano Alejandro, de Zan Macarena, Capunay Carlos, Campisi Roxana, Rodriguez-Granillo Gaston A

机构信息

From the Department of Cardiovascular Imaging, Diagnóstico Maipú, Buenos Aires, Argentina.

出版信息

J Comput Assist Tomogr. 2017 Jul/Aug;41(4):661-667. doi: 10.1097/RCT.0000000000000584.

Abstract

OBJECTIVES

The aim of this study was to explore the diagnostic performance of dual-energy computed tomography perfusion (DE-CTP) at different energy levels.

METHODS

Patients with known or suspected coronary artery disease underwent stress and rest DE-CTP and single-photon emission computed tomography. Images were evaluated using monochromatic data, and perfusion defects were initially identified in a qualitative manner and subsequently confirmed using attenuation levels.

RESULTS

Thirty-six patients were included. Sensitivity, specificity, positive predictive value, and negative predictive value of DE-CTP for the identification of perfusion defects were 84.1%, 94.2%, 77.3%, and 96.2%, respectively. Perfusion defects showed significantly lower attenuation than normal segments, with the largest differences among low energy levels (sensitivity of 96% and specificity of 98% using a cutoff value ≤ 153 Hounsfield units at 40 keV), progressively declining at the higher levels (P < 0.001).

CONCLUSIONS

Dual-energy CTP at the lowest energy levels allowed improved discrimination of perfusion defects compared with higher energy levels.

摘要

目的

本研究旨在探讨不同能量水平下双能计算机断层扫描灌注成像(DE-CTP)的诊断性能。

方法

对已知或疑似冠心病患者进行负荷及静息状态下的DE-CTP和单光子发射计算机断层扫描。使用单色数据评估图像,灌注缺损最初采用定性方式识别,随后使用衰减水平进行确认。

结果

纳入36例患者。DE-CTP识别灌注缺损的灵敏度、特异度、阳性预测值和阴性预测值分别为84.1%、94.2%、77.3%和96.2%。灌注缺损的衰减明显低于正常节段,在低能量水平差异最大(40keV时,使用截断值≤153亨氏单位,灵敏度为96%,特异度为98%),在较高能量水平逐渐下降(P<0.001)。

结论

与较高能量水平相比,最低能量水平的双能CTP能够更好地区分灌注缺损。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验